Fernanda R. Marciano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1312519/publications.pdf

Version: 2024-02-01

102 papers 2,201 citations

236925 25 h-index 302126 39 g-index

108 all docs

 $\frac{108}{\text{docs citations}}$

108 times ranked 3049 citing authors

#	Article	IF	Citations
1	Antibacterial activity of DLC films containing TiO2 nanoparticles. Journal of Colloid and Interface Science, 2009, 340, 87-92.	9.4	104
2	Antibacterial activity of DLC and Ag–DLC films produced by PECVD technique. Diamond and Related Materials, 2009, 18, 1010-1014.	3.9	104
3	Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Materials Science and Engineering C, 2016, 59, 782-791.	7.3	88
4	Fast functionalization of vertically aligned multiwalled carbon nanotubes using oxygen plasma. Materials Letters, 2012, 70, 89-93.	2.6	87
5	Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition. RSC Advances, 2016, 6, 32615-32623.	3.6	63
6	Electrospun nanofiber blend with improved mechanical and biological performance. International Journal of Nanomedicine, 2018, Volume 13, 7891-7903.	6.7	63
7	Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids and Surfaces B: Biointerfaces, 2017, 155, 544-552.	5.0	61
8	Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. Journal of Materials Chemistry B, 2013, 1, 4947.	5.8	58
9	<i>In Vitro</i> and <i>in Vivo</i> Studies of Novel Poly(<scp>d</scp> , <scp>l</scp> -lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration. ACS Applied Materials & Interfaces, 2015, 7, 9385-9398.	8.0	57
10	Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102143.	3.3	47
11	Improvement of DLC electrochemical corrosion resistance by addiction of fluorine. Diamond and Related Materials, 2010, 19, 537-540.	3.9	46
12	The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Materials Science and Engineering C, 2013, 33, 2620-2625.	7.3	45
13	PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Materials Science and Engineering C, 2017, 73, 31-39.	7.3	42
14	The improvement of DLC film lifetime using silver nanoparticles for use on space devices. Diamond and Related Materials, 2008, 17, 1674-1679.	3.9	41
15	Wettability and antibacterial activity of modified diamond-like carbon films. Applied Surface Science, 2009, 255, 8377-8382.	6.1	38
16	Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surface and Coatings Technology, 2010, 204, 2986-2990.	4.8	38
17	Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites. Materials Science and Engineering C, 2013, 33, 4305-4312.	7.3	38
18	Bioprinting a Synthetic Smectic Clay for Orthopedic Applications. Advanced Healthcare Materials, 2019, 8, e1900158.	7.6	36

#	Article	IF	Citations
19	Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films. Vacuum, 2011, 85, 662-666.	3.5	33
20	Cell viability and adhesion on diamond-like carbon films containing titanium dioxide nanoparticles. Applied Surface Science, 2013, 266, 176-181.	6.1	31
21	Atomic Layer Deposited TiO2 and Al2O3 Thin Films as Coatings for Aluminum Food Packaging Application. Materials, 2019, 12, 682.	2.9	30
22	Biomineralization of Superhydrophilic Vertically Aligned Carbon Nanotubes. Langmuir, 2012, 28, 4413-4424.	3.5	28
23	Fast preparation of free-standing nanohydroxyapatite–vertically aligned carbon nanotube scaffolds. Journal of Materials Chemistry B, 2014, 2, 1196.	5.8	28
24	Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion. Materials Science and Engineering C, 2017, 79, 199-208.	7.3	27
25	Characterization and in vitro and in vivo assessment of poly(butylene) Tj ETQq $1\ 1\ 0.784314\ rgBT$ /Overlock $10\ T$ Journal of Polymer Research, 2019, 26, 1.	f 50 507 T 2.4	d (adipate-co 27
26	Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS ONE, 2018, 13, e0209386.	2.5	26
27	Printing 3D Hydrogel Structures Employing Low-Cost Stereolithography Technology. Journal of Functional Biomaterials, 2020, 11, 12.	4.4	25
28	Increasing mouse embryonic fibroblast cells adhesion on superhydrophilic vertically aligned carbon nanotube films. Materials Science and Engineering C, 2011, 31, 1505-1511.	7.3	24
29	Oxygen-generating smart hydrogels supporting chondrocytes survival in oxygen-free environments. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111192.	5.0	24
30	Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation. ACS Biomaterials Science and Engineering, 2018, 4, 1580-1590.	5.2	23
31	An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films. Materials Science and Engineering C, 2013, 33, 641-647.	7.3	22
32	In vivo biocompatibility of diamond-like carbon films containing TiO2 nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 117.	3.6	21
33	Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Materials Science and Engineering C, 2014, 41, 65-69.	7.3	20
34	Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. International Journal of Nanomedicine, 2016, 11, 2569.	6.7	20
35	<p>High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model</p> . International Journal of Nanomedicine, 2019, Volume 14, 865-874.	6.7	20
36	Diamond-like carbon films produced from high deposition rates exhibit antibacterial activity. Synthetic Metals, 2009, 159, 2167-2169.	3.9	19

#	Article	IF	CITATIONS
37	Polypyrrole increases branching and neurite extension by Neuro2A cells on PBAT ultrathin fibers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1753-1763.	3.3	19
38	<p>Biological response of chemically treated surface of the ultrafine-grained Ti–6Al–7Nb alloy for biomedical applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 1725-1736.	6.7	19
39	Rotary jet-spun porous microfibers as scaffolds for stem cells delivery to central nervous system injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 98-107.	3.3	19
40	Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Communications Biology, 2021, 4, 233.	4.4	19
41	In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites. Journal of Materials Science: Materials in Medicine, 2013, 24, 1723-1732.	3.6	18
42	Cell Viability of Porous Poly(d,I-lactic acid)/Vertically Aligned Carbon Nanotubes/Nanohydroxyapatite Scaffolds for Osteochondral Tissue Engineering. Materials, 2019, 12, 849.	2.9	18
43	Biomineralization inspired engineering of nanobiomaterials promoting bone repair. Materials Science and Engineering C, 2021, 120, 111776.	7.3	18
44	Use of near atmospheric pressure and low pressure techniques to modification DLC film surface. Surface and Coatings Technology, 2009, 204, 64-68.	4.8	16
45	Oxygen plasma etching of silver-incorporated diamond-like carbon films. Thin Solid Films, 2009, 517, 5739-5742.	1.8	16
46	Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering C, 2019, 103, 109778.	7.3	16
47	Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111850.	5.0	16
48	In Vitro Osteogenesis Stimulation via Nano-Hydroxyapatite/Carbon Nanotube Thin Films on Biomedical Stainless Steel. Materials, 2018, 11, 1555.	2.9	16
49	Characterization of crystalline diamond incorporated diamond-like carbon films. Diamond and Related Materials, 2010, 19, 1139-1143.	3.9	15
50	Tribological effect of iron oxide residual on the DLC film surface under seawater and saline solutions. Surface Science, 2011, 605, 783-787.	1.9	15
51	On the design and properties of scaffolds based on vertically aligned carbon nanotubes transferred onto electrospun poly (lactic acid) fibers. Materials and Design, 2017, 127, 183-192.	7.0	15
52	TiO2 anti-corrosive thin films on duplex stainless steel grown using cathodic cage plasma deposition. Surface and Coatings Technology, 2018, 347, 136-141.	4.8	15
53	In vitro and in vivo evaluation of rotary-jet-spun poly(É>-caprolactone) with high loading of nano-hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2019, 30, 19.	3.6	15
54	Enhanced DLC wear performance by the presence of lubricant additives. Materials Research, 2011, 14, 222-226.	1.3	14

#	Article	IF	Citations
55	In Vivo Evaluation of the Genotoxic Effects of Poly (Butylene adipate-co-terephthalate)/Polypyrrole with Nanohydroxyapatite Scaffolds for Bone Regeneration. Materials, 2019, 12, 1330.	2.9	14
56	Hybrid chitosan/amniotic membrane-based hydrogels for articular cartilage tissue engineering application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 961-970.	3.4	14
57	<p>Electrospraying Oxygen-Generating Microparticles for Tissue Engineering Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 1173-1186.	6.7	14
58	Crystalline diamond particles into diamond-like carbon films: The influence of the particle sizes on the electrochemical corrosion resistance. Surface and Coatings Technology, 2010, 204, 2600-2604.	4.8	13
59	Proposed model for growth preference of plate-like nanohydroxyapatite crystals on superhydrophilic vertically aligned carbon nanotubes by electrodeposition. Theoretical Chemistry Accounts, 2011, 130, 1071-1082.	1.4	13
60	A Novel Bioresorbable Device as a Controlled Release System for Protecting Cells from Oxidative Stress from Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 6827-6838.	4.0	13
61	Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds. Journal of Materials Research, 2020, 35, 3265-3275.	2.6	13
62	Characterization of Optimized TiO2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistance. International Journal of Nanomedicine, 2021, Volume 16, 667-682.	6.7	13
63	Electrospun Poly(butylene-adipate-co-terephthalate)/Nano-hyDroxyapatite/Graphene Nanoribbon Scaffolds Improved the In Vivo Osteogenesis of the Neoformed Bone. Journal of Functional Biomaterials, 2021, 12, 11.	4.4	13
64	Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces. Applied Surface Science, 2013, 285, 645-648.	6.1	12
65	Oxygen Plasma Exfoliated Vertically-Aligned Carbon Nanotubes as Electrodes for Ultrasensitive Stripping Detection of Pb2+. Journal of the Electrochemical Society, 2014, 161, H321-H325.	2.9	12
66	Effect of gold oxide incorporation on electrochemical corrosion resistance of diamond-like carbon. Diamond and Related Materials, 2015, 53, 40-44.	3.9	12
67	High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds. Materials Chemistry and Physics, 2016, 177, 56-66.	4.0	12
68	Morphological analysis of the TiN thin film deposited by CCPN technique. Journal of Materials Research and Technology, 2020, 9, 13945-13955.	5.8	12
69	Tribological behavior under aggressive environment of diamond-like carbon films with incorporated nanocrystalline diamond particles. Surface and Coatings Technology, 2011, 206, 434-439.	4.8	11
70	Thermodynamic aspects of fibroblastic spreading on diamond-like carbon films containing titanium dioxide nanoparticles. Theoretical Chemistry Accounts, 2011, 130, 1085-1093.	1.4	11
71	Influence of crystalline diamond nanoparticles on diamond-like carbon friction behavior. Applied Surface Science, 2011, 257, 7387-7393.	6.1	11
72	Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube. Materials Science and Engineering C, 2014, 36, 180-186.	7.3	11

#	Article	IF	CITATIONS
73	Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite. Journal of Materials Science: Materials in Medicine, 2015, 26, 113.	3.6	11
74	The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	11
75	Surface characteristics of a modified acidulated phosphate fluoride gel with nanoâ€hydroxyapatite coating applied on bovine enamel subjected to an erosive environment. Microscopy Research and Technique, 2018, 81, 1456-1466.	2.2	11
76	Carbon Nanomaterials for Treating Osteoporotic Vertebral Fractures. Current Osteoporosis Reports, 2018, 16, 626-634.	3.6	10
77	Electrospun Nanofibrous Poly (Lactic Acid)/Titanium Dioxide Nanocomposite Membranes for Cutaneous Scar Minimization. Frontiers in Bioengineering and Biotechnology, 2019, 7, 421.	4.1	10
78	Improvement of diamond-like carbon electrochemical corrosion resistance by addition of nanocrystalline diamond. Journal of Colloid and Interface Science, 2010, 342, 636-637.	9.4	9
79	Magnetic super-hydrophilic carbon nanotubes/graphene oxide composite as nanocarriers of mesenchymal stem cells: Insights into the time and dose dependences. Materials Science and Engineering C, 2016, 67, 694-701.	7.3	9
80	Poly(Lactic Acid) Fine Fibers Containing a Low Content of Superhydrophilic Multiâ€Walled Carbon Nanotube Graphene Oxide Hybrid as Scaffolds for Biological Applications. Macromolecular Materials and Engineering, 2018, 303, 1800317.	3.6	9
81	Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone. Journal of Materials Science: Materials in Medicine, 2020, 31, 72.	3.6	9
82	Efficient method to produce biomineralizated nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds. Materials Letters, 2012, 79, 166-169.	2.6	8
83	Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles. Applied Surface Science, 2013, 275, 258-263.	6.1	8
84	Rotary Jet-Spun Polycaprolactone/Hydroxyapatite and Carbon Nanotube Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells Increase Bone Neoformation. ACS Applied Bio Materials, 2022, 5, 1013-1024.	4.6	8
85	In vivo evaluation of drug delivery after ultrasound application: A new use for the photoacoustic technique. European Physical Journal Special Topics, 2005, 125, 789-791.	0.2	7
86	In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. Journal of Materials Science: Materials in Medicine, 2019, 30, 81.	3.6	7
87	Survival and Proliferation under Severely Hypoxic Microenvironments Using Cell-Laden Oxygenating Hydrogels. Journal of Functional Biomaterials, 2021, 12, 30.	4.4	7
88	Photoacoustic monitoring of the absorption of isotonic saline solution by human mucus. Medical Engineering and Physics, 2007, 29, 980-983.	1.7	6
89	Calcification in vitro of biomineralizated nanohydroxyapatite/superydrophilic vertically aligned multiwalled carbon nanotube scaffolds. Materials Research, 2013, 16, 614-618.	1.3	5
90	Raman spectroscopy-multivariate analysis related to morphological surface features on nanomaterials applied for dentin coverage. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117818.	3.9	5

#	Article	IF	Citations
91	Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering. Journal of Functional Biomaterials, 2022, 13, 45.	4.4	5
92	Tritrichomonas foetus adhere to superhydrophilic vertically aligned multi-walled carbon nanotube surface. Materials Science and Engineering C, 2011, 31, 1614-1617.	7.3	4
93	Decontamination of mobile phones and electronic devices for health care professionals using a chlorhexidine/carbomer 940® gel. Frontiers of Chemical Science and Engineering, 2019, 13, 192-198.	4.4	3
94	Bioactivity of an Experimental Dental Implant with Anodized Surface. Journal of Functional Biomaterials, 2021, 12, 39.	4.4	2
95	Correlation and Comparison Between Thermodynamic Aspects and Cytocompatibility of Cells on Superhydrophobic and Superhydrophilic Vertically Aligned Carbon Nanotubes. Current Physical Chemistry, 2013, 3, 155-165.	0.2	2
96	Characterization and bioactivity study of nanohydroxyapatite on superhydrophilic vertically aligned carbon nanotubes using optical techniques. Proceedings of SPIE, 2012, , .	0.8	1
97	In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids. Materials Research, 2013, 16, 650-654.	1.3	0
98	Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds. Materials Research, 2013, 16, 661-667.	1.3	0
99	Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials., 2015,,.		0
100	INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES. Revista UniVap, 2012, 18, 112.	0.1	0
101	THERMAL STABILITY STUDY OF DIAMOND-LIKE CARBON FILMS CONTAINING CRYSTALLINE DIAMOND NANOPARTICLES. Revista UniVap, 2014, 20, 183.	0.1	O
102	Deposição de filmes carbonosos em aço AISI D6 através da técnica de gaiola catódica. Revista Materia, 2020, 25, .	0.2	0