Tatyana B Nesterova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1312317/publications.pdf

Version: 2024-02-01

36 papers 3,823 citations

236833 25 h-index 35 g-index

40 all docs

40 docs citations

40 times ranked

4129 citing authors

#	Article	IF	CITATIONS
1	Xist-mediated silencing requires additive functions of SPEN and Polycomb together with differentiation-dependent recruitment of SmcHD1. Cell Reports, 2022, 39, 110830.	2.9	9
2	Xist Repeats B and C, but not Repeat A, mediate de novo recruitment of the Polycomb system in X chromosome inactivation. Developmental Cell, 2021, 56, 1234-1235.	3.1	4
3	Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading. Science, 2021, 372, .	6.0	42
4	The role of the Xist 5' m6A region and RBM15 in X chromosome inactivation. Wellcome Open Research, 2020, 5, 31.	0.9	37
5	Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nature Communications, 2019, 10, 3129.	5.8	93
6	The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nature Communications, 2019, 10, 30.	5.8	87
7	Smchd1 Targeting to the Inactive X Is Dependent on the Xist-HnrnpK-PRC1 Pathway. Cell Reports, 2018, 25, 1912-1923.e9.	2.9	56
8	PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science, 2017, 356, 1081-1084.	6.0	220
9	The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes and Development, 2017, 31, 876-888.	2.7	104
10	hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing. Molecular Cell, 2017, 68, 955-969.e10.	4.5	255
11	Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nature Communications, 2016, 7, 13661.	5.8	207
12	MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 635-642.	2.3	24
13	Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nature Communications, 2016, 7, 12354.	5.8	19
14	Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Molecular Cell, 2016, 62, 848-861.	4.5	189
15	A Pooled shRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing. Cell Reports, 2015, 12, 562-572.	2.9	226
16	Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Molecular and Cellular Biology, 2015, 35, 4053-4068.	1.1	66
17	Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2235-2240.	3.3	91
18	Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nature Structural and Molecular Biology, 2014, 21, 955-961.	3.6	79

#	Article	IF	CITATIONS
19	Epigenetic Functions of Smchd1 Repress Gene Clusters on the Inactive X Chromosome and on Autosomes. Molecular and Cellular Biology, 2013, 33, 3150-3165.	1.1	99
20	Variability of Sequence Surrounding the Xist Gene in Rodents Suggests Taxon-Specific Regulation of X Chromosome Inactivation. PLoS ONE, 2011, 6, e22771.	1.1	15
21	Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells. Epigenetics and Chromatin, 2011, 4, 17.	1.8	42
22	Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation. Epigenetics and Chromatin, 2010, 3, 10.	1.8	54
23	FGF4 Independent Derivation of Trophoblast Stem Cells from the Common Vole. PLoS ONE, 2009, 4, e7161.	1.1	25
24	Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics and Chromatin, 2008, 1, 2.	1.8	76
25	High-Resolution G-Banding of Chromosomes in Microtus Subarvalis (Rodentia, Arvicolidae). Hereditas, 2004, 123, 47-52.	0.5	12
26	High-Resolution G-Banding of Chromosones in the Common Vole Microtus Arvalis (Rodentia,) Tj ETQq0 0 0 rgBT	Oyerlock	10,Tf 50 462
27	Comparative Analysis of Chromosomes in Microtus Transcaspicus and Microtus Subarvalis (Arvicolidae, Rodentia): High-Resolution G-Banding and Localization of NORs. Hereditas, 2004, 124, 243-250.	0.5	4
28	Polycomb Group Proteins Ring 1 A/B Link Ubiquitylation of Histone H2A to Heritable Gene Silencing and X Inactivation. Developmental Cell, 2004, 7, 663-676.	3.1	829
29	Establishment of Histone H3 Methylation on the Inactive X Chromosome Requires Transient Recruitment of Eed-Enx1 Polycomb Group Complexes. Developmental Cell, 2003, 4, 481-495.	3.1	614
30	Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes and Development, 2003, 17, 2177-2190.	2.7	62
31	Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. Differentiation, 2002, 69, 216-225.	1.0	36
32	Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Research, 2001, 9, 107-120.	1.0	55
33	Comparative mapping of X chromosomes in vole species of the genus Microtus. Chromosome Research, 1998, 6, 41-48.	1.0	29
34	Repetitive DNA sequences in the common vole: cloning, characterization and chromosome localization of two novel complex repeats MS3 and MS4 from the genome of the East European vole Microtus rossiaemeridionalis. Chromosome Research, 1998, 6, 351-360.	1.0	26
35	The role of Xist in the regulation of X chromosome inactivation. Genetical Research, 1998, 72, 59-72.	0.3	O
36	Heterochromatin as a factor affecting X-inactivation in interspecific female vole hybrids (Microtidae,) Tj ETQq0 C	0 rggT/O	verlock 10 Tf