Quirine M Ketterings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of headland area on whole field and farm corn silage and grain yield. Agronomy Journal, 2021, 113, 147-158.	0.9	5
2	Effects of fertility amendments on weed growth and weed–crop competition: a review. Weed Science, 2021, 69, 132-146.	0.8	42
3	Spatial estimation methods for mapping corn silage and grain yield monitor data. Precision Agriculture, 2021, 22, 1501-1520.	3.1	7
4	Conservation tillage is compatible with manure injection in corn silage systems. Agronomy Journal, 2021, 113, 2900-2912.	0.9	7
5	Long-Term Soil Nutrient Management Affects Taxonomic and Functional Weed Community Composition and Structure. Frontiers in Agronomy, 2021, 3, .	1.5	12
6	Impact of sulfur application on soybean yield and quality in New York. Agronomy Journal, 2021, 113, 2858-2871.	0.9	6
7	Digital image analysis estimates of biomass, carbon, and nitrogen uptake of winter cereal cover crops. Computers and Electronics in Agriculture, 2021, 184, 106093.	3.7	11
8	Proposed Method for Statistical Analysis of On-Farm Single Strip Treatment Trials. Agronomy, 2021, 11, 2042.	1.3	5
9	Corn Grain Yield Prediction and Mapping from Unmanned Aerial System (UAS) Multispectral Imagery. Remote Sensing, 2021, 13, 3948.	1.8	7
10	Nitrogen and Phosphorus Balances Vary at the Whole-Farm, Field, and Within-Field Scales. Frontiers in Sustainability, 2021, 2, .	1.3	0
11	Combining field phosphorus runoff risk assessments with wholeâ€farm phosphorus balances to guide manure management decisions. Journal of Environmental Quality, 2020, 49, 496-508.	1.0	2
12	Accuracy of NDVI-derived corn yield predictions is impacted by time of sensing. Computers and Electronics in Agriculture, 2020, 169, 105236.	3.7	42
13	Evaluating Management Implications of the New York Phosphorus Index with Farm Field Information. Journal of Environmental Quality, 2019, 48, 1082-1090.	1.0	3
14	Nitrogen Management for Forage Winter Cereals in the Northeastern USA. Soil Science Society of America Journal, 2019, 83, 1111-1123.	1.2	4
15	Combining Spatial and Temporal Corn Silage Yield Variability for Management Zone Development. Agronomy Journal, 2019, 111, 2703-2711.	0.9	26
16	Inâ€Field Spatial Variability of Corn Stalk Nitrate Test Results. Agronomy Journal, 2019, 111, 2864-2873.	0.9	4
17	Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. Journal of Dairy Science, 2019, 102, 7134-7149.	1.4	12
18	Nitrogen Management of Brachytic Dwarf Brown Midrib Forage Sorghum in New York. Agronomy Journal, 2019, 111, 1468-1477.	0.9	3

#	Article	IF	CITATIONS
19	Nitrogen response models for winter cereals grown for forage. Journal of Agronomy and Crop Science, 2019, 205, 248-261.	1.7	7
20	Doubleâ€Cropping with Forage Sorghum and Forage Triticale in New York. Agronomy Journal, 2019, 111, 3374-3382.	0.9	10
21	Proximal sensor-based algorithm for variable rate nitrogen application in maize in northeast U.S.A Computers and Electronics in Agriculture, 2018, 145, 373-378.	3.7	19
22	Spring Nitrogen Management is Important for Triticale Forage Yield and Quality. Agronomy Journal, 2018, 110, 2025-2032.	0.9	6
23	Nitrous Oxide Emissions from Surface versus Injected Manure in Perennial Hay Crops. Soil Science Society of America Journal, 2018, 82, 156-166.	1.2	12
24	Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement. Agronomy Journal, 2018, 110, 1-37.	0.9	212
25	Shifting from N-based to P-based manure management maintains soil test phosphorus dynamics in a long-term corn and alfalfa rotation. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	19
26	Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions associated with milk production. Agriculture, Ecosystems and Environment, 2017, 237, 31-44.	2.5	18
27	Soil Phosphorus Saturation Ratio Sets Comparable Manure Application Cutoffs Across States Differing in Agronomic Soil Test. Soil Science, 2017, 182, 36-44.	0.9	5
28	Restructuring the P Index to Better Address P Management in New York. Journal of Environmental Quality, 2017, 46, 1372-1379.	1.0	13
29	Improving Sample Collection, Sample Processing, and Laboratory Analyses for Corn Stalk Nitrate Test. Agronomy Journal, 2017, 109, 2312-2322.	0.9	7
30	Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS ONE, 2017, 12, e0171708.	1.1	90
31	Inâ€Season Estimation of Corn Yield Potential Using Proximal Sensing. Agronomy Journal, 2017, 109, 1323-1330.	0.9	35
32	Inâ€Field Variability of the Illinois Soil Nitrogen Test and Lossâ€onâ€Ignition Results for Nitrogen Management. Soil Science Society of America Journal, 2017, 81, 1211-1221.	1.2	6
33	Early Fall Planting Increases Growth and Nitrogen Uptake of Winter Cereals. Agronomy Journal, 2017, 109, 795-801.	0.9	13
34	Agroâ€Environmental Consequences of Shifting from Nitrogen―to Phosphorusâ€Based Manure Management of Corn. Soil Science Society of America Journal, 2017, 81, 1127-1138.	1.2	10
35	Under―or Overâ€Application of Nitrogen Impact Corn Yield, Quality, Soil, and Environment. Agronomy Journal, 2017, 109, 343-353.	0.9	24
36	Proximal Sensing to Estimate Yield of Brown Midrib Forage Sorghum. Agronomy Journal, 2017, 109, 107-114.	0.9	17

#	Article	IF	CITATIONS
37	Integrating Record Keeping with Whole Farm Nutrient Mass Balance: A Case Study. Journal of Agricultural Science, 2016, 8, 22.	0.1	1
38	Nitrogen―vs. Phosphorusâ€Based Manure and Compost Management of Corn. Agronomy Journal, 2016, 108, 185-195.	0.9	19
39	Soil Properties under Nitrogen―vs. Phosphorusâ€Based Manure and Compost Management of Corn. Soil Science Society of America Journal, 2016, 80, 1272-1282.	1.2	30
40	Factors of yield resilience under changing weather evidenced by a 14-year record of corn-hay yield in a 1000-cow dairy farm. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	12
41	Assessment of yield monitoring equipment for dry matter and yield of corn silage and alfalfa/grass. Precision Agriculture, 2016, 17, 546-563.	3.1	9
42	Integrating cover crops for nitrogen management in corn systems on Northeastern U.S. dairies. Crops & Soils, 2015, 48, 18-19.	0.1	0
43	Winter Cereals as Double Crops in Corn Rotations on New York Dairy Farms. Journal of Agricultural Science, 2015, 7, .	0.1	16
44	Integrating Cover Crops for Nitrogen Management in Corn Systems on Northeastern U.S. Dairies. Agronomy Journal, 2015, 107, 1365-1376.	0.9	84
45	Effects of Organic Nutrient Amendments on Weed and Crop Growth. Weed Science, 2015, 63, 710-722.	0.8	26
46	Changes in nutrient mass balances over time and related drivers for 54 New York State dairy farms. Journal of Dairy Science, 2015, 98, 5313-5329.	1.4	22
47	Long-term trends of nitrogen and phosphorus mass balances on New York State dairy farms. Journal of Dairy Science, 2015, 98, 7052-7070.	1.4	16
48	Yields and Profitability during and after Transition in Organic Grain Cropping Systems. Agronomy Journal, 2014, 106, 871-880.	0.9	27
49	Characterization of nitrogen, phosphorus, and potassium mass balances of dairy farms in New York State. Journal of Dairy Science, 2014, 97, 7614-7632.	1.4	42
50	Shallow mixing of surface soil and liquid dairy manure conserves nitrogen while retaining surface residue. Agronomy for Sustainable Development, 2013, 33, 507-517.	2.2	9
51	Emergence and Performance of Two Invasive Swallowworts (<i>Vincetoxicum</i> spp.) in Contrasting Soil Types and Soil pH. Invasive Plant Science and Management, 2013, 6, 281-291.	0.5	17
52	Whole Farm Nutrient Balance Calculator for New York Dairy Farms. Journal of Natural Resources and Life Sciences Education, 2013, 42, 57-67.	0.8	16
53	Survey of Cover Crop Use on New York Dairy Farms. Crop Management, 2013, 12, 1-5.	0.3	17
54	Phosphorus Index as a Phosphorus Awareness Tool: Documented Phosphorus Use Reduction in New York State. Journal of Environmental Quality, 2012, 41, 1767-1773.	1.0	19

#	Article	IF	CITATIONS
55	Phosphorus Indices: Why We Need to Take Stock of How We Are Doing. Journal of Environmental Quality, 2012, 41, 1711-1719.	1.0	76
56	Soil and Tissue Testing for Sulfur Management of Alfalfa in New York State. Soil Science Society of America Journal, 2012, 76, 298-306.	1.2	6
57	Evaluation of Dairy and Cash Grain Farmers' Perceptions of the Value of Manure. Crop Management, 2012, 11, 1-8.	0.3	4
58	Relative effects of ammonia and nitrite on the germination and early growth of aerobic rice. Journal of Plant Nutrition and Soil Science, 2011, 174, 292-300.	1.1	25
59	Development and evaluation of an integrated simulation model for assessing smallholder crop–livestock production in Yucatán, Mexico. Agricultural Systems, 2011, 104, 1-12.	3.2	36
60	Application of a simulation model for assessing integration of smallholder shifting cultivation and sheep production in Yucatán, Mexico. Agricultural Systems, 2011, 104, 13-19.	3.2	20
61	Manure Application Technology in Reduced Tillage and Forage Systems: A Review. Journal of Environmental Quality, 2011, 40, 292-301.	1.0	86
62	Evaluation methods for a combined research and extension program used to address starter phosphorus fertilizer use for corn in New York. Canadian Journal of Soil Science, 2011, 91, 467-477.	0.5	12
63	A Comparison of Soil Sulfur Extraction Methods. Soil Science Society of America Journal, 2011, 75, 1578-1583.	1.2	24
64	Inâ€Field Variability of Soil Test Phosphorus and Implications for Agronomic and Environmental Phosphorus Management. Soil Science Society of America Journal, 2010, 74, 1800-1807.	1.2	6
65	Illinois Soil Nitrogen Test with Organic Matter Correction for Predicting Nitrogen Responsiveness of Corn in Rotation. Soil Science Society of America Journal, 2009, 73, 303-311.	1.2	23
66	Predictors of Lime Needs for pH and Aluminum Management of New York Agricultural Soils. Soil Science Society of America Journal, 2009, 73, 443-448.	1.2	14
67	Nitrogen Needs of Teff Managed as Forage Crop in New York. Forage and Grazinglands, 2009, 7, 1-9.	0.2	7
68	Phosphorus Management of Lucerne Grown on Calcareous Soil in Turkey. Journal of Plant Nutrition, 2009, 32, 516-535.	0.9	4
69	Effect of Soil Phosphorus Levels on Phosphorus Runoff Concentrations from Turfgrass. Water, Air, and Soil Pollution, 2009, 199, 33-44.	1.1	24
70	Managing maize production in shifting cultivation milpa systems in Yucatán, through weed control and manure application. Agriculture, Ecosystems and Environment, 2009, 133, 123-134.	2.5	21
71	Effects of phosphateâ€solubilizing microorganisms on strawberry yield and nutrient concentrations. Journal of Plant Nutrition and Soil Science, 2009, 172, 385-392.	1.1	60
72	Incorporation of Legume Residues Does Not Increase Productivity of Intercropped Beans on Smallholder Farms in Trans-Nzoia District, Kenya. Biological Agriculture and Horticulture, 2009, 26, 323-335.	0.5	1

#	Article	IF	CITATIONS
73	Yield and Chemical Composition of Brussels Sprout (Brassica oleracea L. gemmifera) as Affected by Boron Management. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 176-182.	0.5	7
74	Humic Acid Addition Enhances B and Pb Phytoextraction by Vetiver Grass (Vetiveria zizanioides (L.)) Tj ETQqO O C	rgBT /Ove	erlogk 10 Tf 5
75	TILLAGE TOOLS FOR MANURE INCORPORATION AND N CONSERVATION. Soil Science, 2008, 173, 649-658.	0.9	5
76	Effect of Nitrogen Application on Yield and Quality of Silage Corn after Forage Legume-Grass. Agronomy Journal, 2008, 100, 73.	0.9	14

77	MEASURING AND PREDICTING THE PHOSPHORUS SORPTION CAPACITY OF MANURE-AMENDED SOILS. Soil Science, 2007, 172, 266-278.	0.9	27
78	Relationships among soilborne bean seedling diseases, Lablab purpureus L. and maize stover residue management, bean insect pests, and soil characteristics in Trans Nzoia district, Kenya. Applied Soil Ecology, 2007, 35, 107-119.	2.1	9
79	Nitrogen Management of Brown Midrib Sorghum × Sudangrass in the Northeastern USA. Agronomy Journal, 2007, 99, 1345-1351.	0.9	34
80	Factors Affecting Change in Soil Test Phosphorus Following Manure and Fertilizer Application. Soil Science Society of America Journal, 2007, 71, 1225-1232.	1.2	18
81	Application of Manure to Established Stands of Alfalfa and Alfalfa-Grass. Forage and Grazinglands, 2007, 5, 1-11.	0.2	5
82	Phosphorus leaching through intact soil cores as influenced by type and duration of manure application. Nutrient Cycling in Agroecosystems, 2007, 77, 269-281.	1.1	34
83	Bean seedling damage by root-feeding grubs (Schizonycha spp.) in Kenya as influenced by planting time, variety, and crop residue management. Applied Soil Ecology, 2006, 34, 240-249.	2.1	6
84	Soil Tests for Predicting Corn Response to Nitrogen Fertilizer in New York. Agronomy Journal, 2006, 98, 675-681.	0.9	55
85	Cornell Cropware: Decision Support Tool for Fertilizer and Manure Nutrient Management Planning. Journal of Natural Resources and Life Sciences Education, 2006, 35, 140-151.	0.3	7
86	Whole Farm Nutrient Management: Capstone Course on Environmental Management of Dairy Farms. Journal of Natural Resources and Life Sciences Education, 2006, 35, 12-23.	0.3	5
87	Potassium Availability Indices and Turfgrass Performance in a Calcareous Sand Putting Green. Crop Science, 2006, 46, 381-389.	0.8	12
88	EFFECTIVENESS OF STANDARD SOIL TESTS FOR ASSESSING POTASSIUM AVAILABILITY IN SAND ROOTZONES. Soil Science, 2005, 170, 110-119.	0.9	8
89	Fallow management strategies and issues in Southeast Asia. Agriculture, Ecosystems and Environment, 2005, 110, 1-13.	2.5	23
90	Reducing Analysis Variability of the Illinois Soil Nitrogen Test with Enclosed Griddles. Soil Science	1.2	30

#	Article	IF	CITATIONS
91	Long-Term Dynamics of Phosphorus Forms and Retention in Manure-Amended Soils. Environmental Science & Technology, 2005, 39, 6672-6680.	4.6	123
92	Phosphorus Speciation in Manure and Manure-Amended Soils Using XANES Spectroscopy. Environmental Science & Technology, 2005, 39, 7485-7491.	4.6	195
93	Phosphorus Removal by Sorghum‧udangrass in Northeastern USA. Forage and Grazinglands, 2004, 2, 1-6.	0.2	3
94	Carbon offsets for conservation and development in Indonesia?. Renewable Agriculture and Food Systems, 2002, 17, 125-137.	0.6	48
95	Soil phosphorus availability after slash-and-burn fires of different intensities in rubber agroforests in Sumatra, Indonesia. Agriculture, Ecosystems and Environment, 2002, 92, 37-48.	2.5	41
96	Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 2001, 146, 199-209.	1.4	663
97	Changes in Soil Mineralogy and Texture Caused by Slashâ€andâ€Burn Fires in Sumatra, Indonesia. Soil Science Society of America Journal, 2000, 64, 1108-1117.	1.2	181
98	Soil Color as an Indicator of Slashâ€andâ€Burn Fire Severity and Soil Fertility in Sumatra, Indonesia. Soil Science Society of America Journal, 2000, 64, 1826-1833.	1.2	107
99	Differential Effects of Earthworms on Nitrogen Cycling from Various Nitrogenâ€15â€Labeled Substrates. Soil Science Society of America Journal, 1999, 63, 882-890.	1.2	34
100	Farmers' perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. Forest Ecology and Management, 1999, 120, 157-169.	1.4	89