Feng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311607/publications.pdf

Version: 2024-02-01

53	2,553	21	50
papers	citations	h-index	g-index
54	54	54	5062
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. Nano Research, 2022, 15, 502-509.	5.8	18
2	A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination. Journal of Nanobiotechnology, 2022, 20, 171.	4.2	5
3	Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps. Analytical and Bioanalytical Chemistry, 2021, 413, 2181-2193.	1.9	5
4	Armor-like passivated CsPbBr ₃ quantum dots: boosted stability with hand-in-hand ligands and enhanced performance of nuclear batteries. Journal of Materials Chemistry A, 2021, 9, 8772-8781.	5.2	13
5	Unravelling the shell growth pathways of Au–Ag core–shell nanoparticles by <i>in situ</i> liquid cell transmission electron microscopy. Nanoscale, 2021, 13, 3136-3143.	2.8	7
6	A Stable CaV ₄ O ₉ ÂAnode Promises Nearâ€Zero Volume Change and Highâ€Capacity Lithium Storage. Advanced Energy Materials, 2021, 11, 2003612.	10.2	16
7	Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. Chemistry of Materials, 2021, 33, 2506-2515.	3.2	10
8	Lattice-resolution visualization of anisotropic sodiation degrees and revelation of sodium storage mechanisms in todorokite-type MnO2 with in-situ TEM. Energy Storage Materials, 2021, 37, 345-353.	9.5	11
9	Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Electrophoresis, 2021, 42, 1996-2009.	1.3	7
10	Sulfide-Fixed Intrinsic Porous NiCoP for Boosting High Capacitance and Long-Term Stability. , 2021, 3, 1016-1024.		21
11	In-situ TEM revisiting NH4V4O10 to unveil the unknown sodium storage mechanism as an anode material. Nano Energy, 2021, 87, 106182.	8.2	10
12	In Situ Liquid Cell Transmission Electron Microscopy Investigation on the Dissolution-Regrowth Mechanism Dominating the Shape Evolution of Silver Nanoplates. Crystal Growth and Design, 2021, 21, 1314-1322.	1.4	9
13	Large Gap Two-Dimensional Topological Insulators with the Significant Rashba Effect in Ethynyl and Methyl Functionalized PbSn Monolayers. Journal of Physical Chemistry Letters, 2021, 12, 12202-12209.	2.1	3
14	Wrinkle networks in exfoliated multilayer graphene and other layered materials. Carbon, 2020, 156, 24-30.	5.4	23
15	Deeply Exploring Anisotropic Evolution toward Large-Scale Growth of Monolayer ReS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 2862-2870.	4.0	21
16	Atomic Modulation Engineering of Hexagon-Shaped CeO ₂ Nanocrystals by <i>In Situ</i> Sculpturing of an Electron Beam. Journal of Physical Chemistry C, 2020, 124, 17006-17014.	1.5	3
17	Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy, 2020, 77, 105299.	8.2	20
18	Cu-doped CoS2 polyhedrons with high catalytic activity and long-term stability. Science China Materials, 2020, 63, 1337-1344.	3.5	15

#	Article	IF	CITATIONS
19	Confining TiO2 Nanotubes in PECVD-Enabled Graphene Capsules Toward Ultrafast K-lon Storage: In Situ TEM/XRD Study and DFT Analysis. Nano-Micro Letters, 2020, 12, 123.	14.4	48
20	In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H ₂ V ₃ O ₈ Nanorods. ACS Energy Letters, 2019, 4, 2081-2090.	8.8	19
21	Understanding the Ensemble of Growth Behaviors of Sub-10-nm Silver Nanorods Using in Situ Liquid Cell Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 21257-21264.	1.5	12
22	In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Nature Nanotechnology, 2019, 14, 950-956.	15.6	30
23	Nitrogen-based gas molecule adsorption of monolayer phosphorene under metal functionalization. Scientific Reports, 2019, 9, 12498.	1.6	25
24	Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Letters, 2019, 19, 1118-1123.	4.5	124
25	Observing the Growth of Pb ₃ O ₄ Nanocrystals by in Situ Liquid Cell Transmission Electron Microscopy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24478-24484.	4.0	18
26	In Situ Visualization of Interfacial Sodium Transport and Electrochemistry between Few‣ayer Phosphorene. Small Methods, 2019, 3, 1900061.	4.6	15
27	Atomic structure and migration dynamics of MoS2/LixMoS2 interface. Nano Energy, 2018, 48, 560-568.	8.2	42
28	Simultaneous atomic-level visualization and high precision photocurrent measurements on photoelectric devices by <i>in situ</i> TEM. RSC Advances, 2018, 8, 948-953.	1.7	7
29	In-situ Probe of Lithium-ion Transport and Phase Evolution Within and Between Silver Hollandite Nanorods. Microscopy and Microanalysis, 2018, 24, 1516-1517.	0.2	0
30	Spring-Like Pseudoelectroelasticity of Monocrystalline Cu ₂ S Nanowire. Nano Letters, 2018, 18, 5070-5077.	4.5	11
31	Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2018, 12, 7866-7874.	7. 3	49
32	Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nature Communications, 2017, 8, 14889.	5.8	29
33	Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods. Nature Communications, 2017, 8, 15400.	5.8	52
34	Defect-Laden MoSe ₂ Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts. Small, 2017, 13, 1700565.	5.2	31
35	Identifying the Conversion Mechanism of NiCo ₂ O ₄ during Sodiation–Desodiation Cycling by In Situ TEM. Advanced Functional Materials, 2017, 27, 1606163.	7.8	39
36	All electrochemical fabrication of MoS ₂ /graphene counter electrodes for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 34546-34552.	1.7	50

#	Article	IF	CITATIONS
37	In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries. Nano Energy, 2016, 30, 771-779.	8.2	57
38	Ultrafast Preparation of Black Phosphorus Quantum Dots for Efficient Humidity Sensing. Chemistry - A European Journal, 2016, 22, 7357-7362.	1.7	114
39	In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene. Nanoscale, 2016, 8, 13603-13610.	2.8	23
40	New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO ₃ Nanobelt by in Situ Transmission Electron Microscopy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9170-9177.	4.0	48
41	Ultrafast electrochemical preparation of graphene/CoS nanosheet counter electrodes for efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 85822-85830.	1.7	16
42	Stable field emission lamps based on well-aligned BaO nanowires. RSC Advances, 2014, 4, 22246.	1.7	9
43	Synthesis and luminescence properties of ternary complexes of Sm x Tb1â^'x (TTA)3Phen nanoparticles and their surface modification. Journal of Materials Science, 2013, 48, 5309-5315.	1.7	8
44	Low temperature casting of graphene into various 3-D shapes. , 2013, , .		0
45	<i>In situ</i> observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory. Applied Physics Letters, 2013, 102, .	1.5	65
46	Graphene as dry adhesive interacting with semiconductor substrates. , 2013, , .		0
47	In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 1513-1527.	1.5	8
48	Hybrid single/poly-crystalline ZnO nanoawl arrays: facile synthesis and enhanced field emission properties. RSC Advances, 2012, 2, 11601.	1.7	4
49	Hollow SnO2 microspheres for high-efficiency bilayered dye sensitized solar cell. RSC Advances, 2012, 2, 7384.	1.7	52
50	Low Temperature Casting of Graphene with High Compressive Strength (Adv. Mater. 37/2012). Advanced Materials, 2012, 24, 5123-5123.	11.1	2
51	Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Functional Materials, 2012, 22, 4421-4425.	7.8	925
52	Solution-derived ZnOnanostructures for photoanodes of dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 818-841.	15.6	243
53	Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale, 2011, 3, 5020.	2.8	148