
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 2014, 7, 869-873.	5.4	620
2	Influence of low Arctic seaâ€ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 2009, 36, .	1.5	573
3	The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly. Journal of Climate, 2012, 25, 2561-2568.	1.2	292
4	Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 2013, 3, 47-51.	8.1	262
5	Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales. Bulletin of the American Meteorological Society, 2016, 97, 1631-1647.	1.7	199
6	Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environmental Research Letters, 2014, 9, 084009.	2.2	142
7	Overview of the MOSAiC expedition: Atmosphere. Elementa, 2022, 10, .	1.1	121
8	Predictability of the Barents Sea Ice in Early Winter: Remote Effects of Oceanic and Atmospheric Thermal Conditions from the North Atlantic. Journal of Climate, 2014, 27, 8884-8901.	1.2	60
9	Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route. Scientific Reports, 2015, 5, 16868.	1.6	58
10	Intercomparison of Arctic Regional Climate Models: Modeling Clouds and Radiation for SHEBA in May 1998. Journal of Climate, 2006, 19, 4167-4178.	1.2	54
11	Application of Aerosondes to Melt-Pond Observations over Arctic Sea Ice. Journal of Atmospheric and Oceanic Technology, 2008, 25, 327-334.	0.5	53
12	Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification?. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	51
13	Impact of radiosonde observations on forecasting summertime Arctic cyclone formation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3249-3273.	1.2	51
14	Nutrient supply and biological response to windâ€induced mixing, inertial motion, internal waves, and currents in the northern <scp>C</scp> hukchi <scp>S</scp> ea. Journal of Geophysical Research: Oceans, 2015, 120, 1975-1992.	1.0	50
15	Correlated Increase of High Ocean Waves and Winds in the Ice-Free Waters of the Arctic Ocean. Scientific Reports, 2018, 8, 4489.	1.6	43
16	Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations. Journal of Geophysical Research: Oceans, 2017, 122, 775-787.	1.0	42
17	Impact of observations from Arctic drifting buoys on the reanalysis of surface fields. Geophysical Research Letters, 2009, 36, .	1.5	41
18	Recurrence of Intraseasonal Cold Air Outbreak during the 2009/2010 Winter in Japan and its Ties to the Atmospheric Condition over the Barents-Kara Sea. Scientific Online Letters on the Atmosphere, 2011, 7, 25-28.	0.6	38

#	Article	IF	CITATIONS
19	The impact of radiosonde data over the iceâ€free Arctic Ocean on the atmospheric circulation in the Northern Hemisphere. Geophysical Research Letters, 2013, 40, 864-869.	1.5	34
20	Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. International Journal of Climatology, 2007, 27, 81-91.	1.5	31
21	Enhanced Diapycnal Mixing due to Near-Inertial Internal Waves Propagating through an Anticyclonic Eddy in the Ice-Free Chukchi Plateau. Journal of Physical Oceanography, 2016, 46, 2457-2481.	0.7	31
22	Intercomparison of Surface Heat Transfer Near the Arctic Marginal Ice Zone for Multiple Reanalyses: A Case Study of September 2009. Scientific Online Letters on the Atmosphere, 2011, 7, 57-60.	0.6	30
23	Application of Aerosondes to high-resolution observations of sea surface temperature over Barrow Canyon. Geophysical Research Letters, 2004, 31, .	1.5	29
24	Argo-type profiling float observations under the Arctic multiyear ice. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1675-1686.	0.6	28
25	Impact of Arctic seaâ€ice retreat on the recent change in cloudâ€base height during autumn. Geophysical Research Letters, 2012, 39, .	1.5	28
26	Changes in phytoplankton community structure during wind-induced fall bloom on the central Chukchi shelf. Polar Biology, 2018, 41, 1279-1295.	0.5	28
27	Antarctic Peninsula warm winters influenced by Tasman Sea temperatures. Nature Communications, 2021, 12, 1497.	5.8	28
28	Towards reliable Arctic sea ice prediction using multivariate data assimilation. Science Bulletin, 2019, 64, 63-72.	4.3	27
29	lce floe distribution in the Sea of Okhotsk in the period when sea-ice extent is advancing. Geophysical Research Letters, 2004, 31, .	1.5	25
30	Acceleration of sea-ice melting due to transmission of solar radiation through ponded ice area in the Arctic Ocean: results of in situ observations from icebreakers in 2006 and 2007. Annals of Glaciology, 2011, 52, 249-260.	2.8	24
31	Coupled Response of Bacterial Production to a Wind-Induced Fall Phytoplankton Bloom and Sediment Resuspension in the Chukchi Sea Shelf, Western Arctic Ocean. Frontiers in Marine Science, 2016, 3, .	1.2	24
32	Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dynamics, 2018, 50, 289-301.	1.7	24
33	The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bulletin of the American Meteorological Society, 2020, 101, E1653-E1676.	1.7	24
34	Effect of heat transmission through melt ponds and ice on melting during summer in the Arctic Ocean. Journal of Geophysical Research, 2008, 113, .	3.3	23
35	Fixed-Point Observation of Mixed Layer Evolution in the Seasonally Ice-Free Chukchi Sea: Turbulent Mixing due to Gale Winds and Internal Gravity Waves. Journal of Physical Oceanography, 2015, 45, 836-853.	0.7	23
36	Shipborne observations of atmospheric black carbon aerosol particles over the Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1914-1921.	1.2	23

#	Article	IF	CITATIONS
37	Improved Reanalysis and Prediction of Atmospheric Fields Over the Southern Ocean Using Campaignâ€Based Radiosonde Observations. Geophysical Research Letters, 2018, 45, 11,406.	1.5	23
38	Review of forecast skills for weather and sea ice in supporting Arctic navigation. Polar Science, 2021, 27, 100523.	0.5	22
39	Clouds and Radiation Processes in Regional Climate Models Evaluated Using Observations Over the Iceâ€free Arctic Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033904.	1.2	22
40	Freshwater in the Arctic Ocean 2010–2019. Ocean Science, 2021, 17, 1081-1102.	1.3	22
41	Observing-System Research and Ensemble Data Assimilation at JAMSTEC. , 2013, , 509-526.		22
42	Outflow of Summertime Arctic Sea Ice Observed by Ice Drifting Buoys and Its Linkage with Ice Reduction and Atmospheric Circulation Patterns. Journal of the Meteorological Society of Japan, 2007, 85, 881-887.	0.7	20
43	The impact of radiosonde data on forecasting seaâ€ice distribution along the Northern Sea Route during an extremely developed cyclone. Journal of Advances in Modeling Earth Systems, 2016, 8, 292-303.	1.3	20
44	Ozone and carbon monoxide observations over open oceans on R/VÂ <i>Mirai</i> from 67° S to 75° N during 2012 to 2017: testing glo chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport. Atmospheric Chemistry and Physics, 2019, 19, 7233-7254.	obal 1.9	19
45	Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones. Cryosphere, 2020, 14, 2029-2052.	1.5	19
46	Record high Pacific Arctic seawater temperatures and delayed sea ice advance in response to episodic atmospheric blocking. Scientific Reports, 2020, 10, 20830.	1.6	18
47	â€~Evolution of a Storm-driven Cloudy Boundary Layer in the Arctic'. Boundary-Layer Meteorology, 2005, 117, 213-230.	1.2	17
48	Predictability of storm wave heights in the ice-free Beaufort Sea. Ocean Dynamics, 2018, 68, 1383-1402.	0.9	17
49	Impact on predictability of tropical and mid-latitude cyclones by extra Arctic observations. Scientific Reports, 2018, 8, 12104.	1.6	17
50	Doppler Radar Study on the Successive Development of Snowbands at a Convergence Line near the Coastal Region of Hokuriku District. Journal of the Meteorological Society of Japan, 2004, 82, 1057-1079.	0.7	17
51	Temperature difference across the Lomonosov Ridge: Implications for the Atlantic Water circulation in the Arctic Ocean. Geophysical Research Letters, 2005, 32, .	1.5	16
52	Observation of on-ice wind waves under grease ice in the western Arctic Ocean. Polar Science, 2021, 27, 100567.	0.5	16
53	Aircraft Observations of Air-mass Modification Over the Sea of Okhotsk during Sea-ice Growth. Boundary-Layer Meteorology, 2005, 117, 111-129.	1.2	15
54	Summertime atmosphere–ocean preconditionings for the Bering Sea ice retreat and the following severe winters in North America. Environmental Research Letters, 2015, 10, 094023.	2.2	14

#	Article	IF	CITATIONS
55	Short-term changes in the mesozooplankton community and copepod gut pigment in the Chukchi Sea in autumn: reflections of a strong wind event. Biogeosciences, 2015, 12, 4005-4015.	1.3	14
56	Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system. Cryosphere, 2018, 12, 2005-2020.	1.5	14
57	Oceanic Supply of Iceâ€Nucleating Particles and Its Effect on Ice Cloud Formation: A Case Study in the Arctic Ocean During a Coldâ€Air Outbreak in Early Winter. Geophysical Research Letters, 2021, 48, e2021GL094646.	1.5	14
58	Characteristics of Heat Transfer over the Ice Covered Sea of Okhotsk during Cold-air Outbreaks. Journal of the Meteorological Society of Japan, 2003, 81, 1057-1067.	0.7	13
59	Antarctic Radiosonde Observations Reduce Uncertainties and Errors in Reanalyses and Forecasts over the Southern Ocean: An Extreme Cyclone Case. Advances in Atmospheric Sciences, 2020, 37, 431-440.	1.9	13
60	Toward sustainable meteorological profiling in polar regions: Case studies using an inexpensive UAS on measuring lower boundary layers with quality of radiosondes. Environmental Research, 2022, 205, 112468.	3.7	13
61	A polar low embedded in a blocking high over the Pacific Arctic. Geophysical Research Letters, 2010, 37,	1.5	12
62	Reproductive success of Pacific copepods in the Arctic Ocean and the possibility of changes in the Arctic ecosystem. Polar Biology, 2015, 38, 1075-1079.	0.5	11
63	Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics. Atmospheric Measurement Techniques, 2017, 10, 2485-2498.	1.2	11
64	Short-term changes in a microplankton community in the Chukchi Sea during autumn: consequences of a strong wind event. Biogeosciences, 2016, 13, 913-923.	1.3	10
65	Do Strong Winds Impact Water Mass, Nutrient, and Phytoplankton Distributions in the Iceâ€Free Canada Basin in the Fall?. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015428.	1.0	10
66	Air Mass Transformation Processes over the Southwestern Region of the Ice-covered Sea of Okhotsk during Cold Air Outbreaks Journal of the Meteorological Society of Japan, 2001, 79, 657-670.	0.7	10
67	A drop in mid-summer shortwave radiation induced by changes in the ice-surface condition in the central Arctic. Geophysical Research Letters, 2005, 32, .	1.5	9
68	Wind Fields over Funka Bay and Their Effect on Water Circulation in the Bay. Journal of Oceanography, 2000, 56, 507-515.	0.7	8
69	Information retrieval for Northern Sea Route (NSR) navigation: A statistical approach using the AIS and TOPAZ4 data. Polar Science, 2021, 27, 100626.	0.5	8
70	Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region. Atmospheric Measurement Techniques, 2021, 14, 4971-4987.	1.2	7
71	A Weak-wind Zone Accompanied with Swelled Snow Clouds in the Upstream of a Low-altitude Ridge. Journal of the Meteorological Society of Japan, 1999, 77, 1039-1059.	0.7	7
72	Saroma-ko Lagoon Observations for sea ice Physico-chemistry and Ecosystems 2019 (SLOPE2019). Bulletin of Glaciological Research, 2020, 38, 1-12.	0.5	7

#	Article	IF	CITATIONS
73	Potential benefit of extra radiosonde observations around the Chukchi Sea for the Alaskan short-range weather forecast. Polar Science, 2019, 21, 124-135.	0.5	6
74	Aircraft Observations of Air-Mass Modification Upstream of the Sea of Japan during Cold-Air Outbreaks. Journal of the Meteorological Society of Japan, 2005, 83, 189-200.	0.7	5
75	Effect of summertime wind conditions on lateral and bottom melting in the central Arctic. Annals of Glaciology, 2006, 44, 37-41.	2.8	5
76	Medium range sea ice prediction in support of Japanese research vessel MIRAI's expedition cruise in 2018. Polar Geography, 2020, 43, 223-239.	0.8	5
77	On the coagulated pancake ice formation: Observation in the refreezing Chukchi Sea and comparison to the Antarctic consolidated pancake ice. Polar Science, 2021, 27, 100622.	0.5	5
78	Seasonal Change in Satelliteâ€Retrieved Lowerâ€Tropospheric Iceâ€Cloud Fraction Over the Southern Ocean. Geophysical Research Letters, 2021, 48, .	1.5	5
79	The Role of Cyclone Activity in the Interannual Variability of the Summertime Beaufort High. Scientific Online Letters on the Atmosphere, 2015, 11, 104-107.	0.6	4
80	Near-tropopause bias in the Russian radiosonde-observed air temperature during the YOPP special observing periods in 2018. Polar Science, 2021, 27, 100601.	0.5	4
81	EFSO at different geographical locations verified with observing-system experiments. Weather and Forecasting, 2021, , .	0.5	4
82	Distribution of natural halocarbons in marine boundary air over the Arctic Ocean. Geophysical Research Letters, 2013, 40, 4086-4091.	1.5	3
83	Performance of Forecasts of Hurricanes with and without Upper-Level Troughs over the Mid-Latitudes. Atmosphere, 2020, 11, 702.	1.0	3
84	Ensemble forecast experiments of summertime sea ice in the Arctic Ocean using the TOPAZ4 ice-ocean data assimilation system. Environmental Research, 2022, 209, 112769.	3.7	3
85	Internal structure of exâ€₹yphoon Phanfone (2014) under an extratropical transition as observed by the research vessel <i>Mirai</i> . Geophysical Research Letters, 2016, 43, 9333-9341.	1.5	2
86	Characteristics of Aerosol Number Concentrations over the Ice-Covered Okhotsk Sea. Journal of the Meteorological Society of Japan, 2005, 83, 633-640.	0.7	1
87	A new norm for seasonal sea ice advance predictability in the Chukchi Sea: rising influence of ocean heat advection. Journal of Climate, 2022, , 1-35.	1.2	1