
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of ANOVA-PCA and DD-SIMCA in the development of corn flour laboratory reference materials. Food Chemistry, 2022, 367, 130748.	4.2	5

 $_{2}$ Determination and multivariate evaluation of the mineral composition of red jambo (Syzygium) Tj ETQq0 0 0 rgBT / $\frac{4}{4.2}$ Powerlock 10 Tf 50 70

3	Fast automated method for the direct determination of total antimony in grape juice samples by hydride generation and atomic fluorescence spectrometric detection without external pretreatment. Food Chemistry, 2022, 381, 132194.	4.2	3
4	A new and accessible instrumentation to determine urea in UHT milk using digital image analysis. Food Chemistry, 2022, 381, 132221.	4.2	2
5	Sequential and Simultaneous Determination of Cd, Fe and Ni in Toothpastes Employing Slurry Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Analytical Letters, 2022, 55, 1192-1206.	1.0	8
6	State of the art of the methods proposed for selenium speciation analysis by CVG-AFS. TrAC - Trends in Analytical Chemistry, 2022, 152, 116617.	5.8	7
7	Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS. Chemosensors, 2022, 10, 139.	1.8	2
8	A risk assessment by metal contamination in a river used for public water supply. Marine Pollution Bulletin, 2022, 179, 113730.	2.3	3
9	Special issue – XI Brazilian Chemometrics Workshop Preface. Food Chemistry, 2022, 390, 133113.	4.2	0
10	Determination and human health risk assessment of mercury in fish samples. Talanta, 2022, 247, 123557.	2.9	14
11	Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments – Practical aspects. Trends in Environmental Analytical Chemistry, 2022, 35, e00169.	5.3	37
12	Determination of Cu, Ni, Mn and Zn in diesel oil samples using energy dispersive X-ray ï¬,uorescence spectrometry after solid phase extraction using sisal fiber. Talanta, 2021, 225, 121910.	2.9	10
13	Spatio-temporal assessment, sources and health risks of water pollutants at trace levels in public supply river using multivariate statistical techniques. Chemosphere, 2021, 282, 130942.	4.2	8
14	Doehlert design in the optimization of procedures aiming food analysis – A review. Food Chemistry, 2021, 364, 130429.	4.2	23
15	A fast and sensitive flow-batch method with hydride generating and atomic fluorescence spectrometric detection for automated inorganic antimony speciation in waters. Talanta, 2020, 207, 119834.	2.9	11
16	Simultaneous Determination of Chromium and Iron in Powdered Milk Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Food Analytical Methods, 2020, 13, 284-290.	1.3	9
17	Spectrophotometric system based on a device created by 3D printing for the accommodation of a webcam chamber as a detection system. Talanta, 2020, 206, 120250.	2.9	21
18	Application of chemometric tools for homogeneity and stability evaluation during the preparation of a powdered milk laboratory reference material for inorganic analysis. Analytical Methods, 2020, 12, 1055-1063.	1.3	4

#	Article	IF	CITATIONS
19	Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchemical Journal, 2020, 153, 104402.	2.3	13
20	A New Simple and Fast Method for Determination of Cobalt in Vitamin B12 and Water Samples Using Dispersive Liquid-Liquid Microextraction and Digital Image Analysis. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	12
21	Development of reference material from powdered milk: Uncertainties and interlaboratory evaluation through confidence ellipses. Microchemical Journal, 2020, 159, 105330.	2.3	1
22	Solid-Phase Extraction and Detection by Digital Image Directly in the Sorbent: Determination of Nickel in Environmental Samples. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
23	Evaluation of the bioavailability of potentially toxic metals in surface sediments collected from a tropical river near an urban area. Marine Pollution Bulletin, 2020, 156, 111215.	2.3	10
24	Assessment of toxicity of metals in river sediments for human supply: Distribution, evaluation of pollution and sources identification. Marine Pollution Bulletin, 2020, 158, 111423.	2.3	20
25	Extraction induced by emulsion breaking for As, Se and Hg determination in crude palm oil by vapor generation-AFS. Food Chemistry, 2020, 318, 126473.	4.2	14
26	Special issue – VIII Brazilian Chemometrics Workshop. Food Chemistry, 2019, 273, 1-2.	4.2	2
27	On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(II) in natural waters by CV AFS. Microchemical Journal, 2019, 150, 104075.	2.3	25
28	Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye. Journal of Environmental Chemical Engineering, 2019, 7, 103264.	3.3	19
29	Determination of ascorbic acid in natural fruit juices using digital image colorimetry. Microchemical Journal, 2019, 149, 104031.	2.3	48
30	A green on-line digestion system using 70% hydrogen peroxide and UV radiation for the determination of chromium in beer employing ETAAS. Microchemical Journal, 2019, 146, 1204-1208.	2.3	7
31	A closed inline system for sample digestion using 70% hydrogen peroxide and UV radiation. Determination of lead in wine employing ETAAS. Talanta, 2019, 191, 479-484.	2.9	8
32	Multisyringe flow injection analysis (MSFIA) for the automatic determination of total iron in wines. Food Chemistry, 2019, 277, 261-266.	4.2	11
33	Simultaneous optimization of multiple responses and its application in Analytical Chemistry – A review. Talanta, 2019, 194, 941-959.	2.9	98
34	Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry – Review. TrAC - Trends in Analytical Chemistry, 2019, 110, 335-343.	5.8	34
35	Liquid phase microextraction associated with flow injection systems for the spectrometric determination of trace elements. TrAC - Trends in Analytical Chemistry, 2019, 110, 357-366.	5.8	28
36	Speciation analysis based on digital image colorimetry: Iron (II/III) in white wine. Talanta, 2019, 194, 86-89.	2.9	43

#	Article	IF	CITATIONS
37	Mineral content in mustard leaves according to the cooking method. Food Chemistry, 2019, 273, 172-177.	4.2	19
38	Multivariate optimization techniques in food analysis – A review. Food Chemistry, 2019, 273, 3-8.	4.2	94
39	An on-line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry. Talanta, 2018, 184, 87-92.	2.9	22
40	Multivariate optimization techniques in analytical chemistry - an overview. Microchemical Journal, 2018, 140, 176-182.	2.3	91
41	Atomic absorption spectrometry – A multi element technique. TrAC - Trends in Analytical Chemistry, 2018, 100, 1-6.	5.8	115
42	Determination of free and total sulfur(IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase. Talanta, 2018, 179, 810-815.	2.9	8
43	A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS. Food Chemistry, 2018, 245, 380-384.	4.2	51
44	Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP OES. Talanta, 2018, 178, 842-846.	2.9	57
45	Analytical strategies for determining the sources and ecotoxicological risk of PAHs in river sediment. Microchemical Journal, 2018, 137, 90-97.	2.3	25
46	Multisyringe flow injection analysis in spectroanalytical techniques – A review. TrAC - Trends in Analytical Chemistry, 2018, 98, 1-18.	5.8	19
47	An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchemical Journal, 2018, 143, 175-180.	2.3	35
48	Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS. Microchemical Journal, 2017, 133, 431-440.	2.3	67
49	Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS. Talanta, 2017, 170, 523-529.	2.9	45
50	Sources and distribution of polycyclic aromatic hydrocarbons (PAHs) and organic matter in surface sediments of an estuary under petroleum activity influence, Todos os Santos Bay, Brazil. Marine Pollution Bulletin, 2017, 119, 223-230.	2.3	58
51	Robustness evaluation in analytical methods optimized using experimental designs. Microchemical Journal, 2017, 131, 163-169.	2.3	95
52	On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS. Talanta, 2017, 165, 502-507.	2.9	23
53	Sequential determination of cadmium and lead in organic pharmaceutical formulations using high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchemical Journal, 2017, 130, 157-161.	2.3	29
54	Direct and Simultaneous Determination of Copper and Iron in Flours by Solid Sample Analysis and High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Food Analytical Methods, 2017, 10, 469-476.	1.3	13

#	Article	IF	CITATIONS
55	Optimization of Analytical Strategy for Determination of Total Antimony in Fish Muscle Tissue using Hydride Generation Atomic Absorption Spectrometry. Current Analytical Chemistry, 2017, 13, .	0.6	Ο
56	Assessment of Trace Elements in Tissues of Fish Species: Multivariate Study and Safety Evaluation. Journal of the Brazilian Chemical Society, 2016, , .	0.6	4
57	Multiâ€responses Methodology Applied in the Electroanalytical Determination of Hair Dye by Using Printed Carbon Electrode Modified with Graphene. Electroanalysis, 2016, 28, 1085-1092.	1.5	5
58	Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry. Talanta, 2016, 156-157, 29-33.	2.9	36
59	Determination and evaluation of the mineral composition of breadfruit (Artocarpus altilis) using multivariate analysis technique. Microchemical Journal, 2016, 128, 84-88.	2.3	22
60	Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)―in marine sediments collected in Todos os Santos Bay, Brazil. Environmental Monitoring and Assessment, 2016, 188, 554.	1.3	12
61	Ultrasound assisted extraction for the determination of mercury in sediment samples employing cold vapour atomic absorption spectrometry. Analytical Methods, 2016, 8, 6554-6559.	1.3	9
62	Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta, 2016, 153, 45-50.	2.9	44
63	Use of tartaric acid–citric acid–sucrose as chemical modifier for the determination of lead in several matrices employing ET AAS. Microchemical Journal, 2016, 126, 368-372.	2.3	12
64	Simplex optimization: A tutorial approach and recent applications in analytical chemistry. Microchemical Journal, 2016, 124, 45-54.	2.3	58
65	Determination of Lead in Iron Supplements by Electrothermal Atomization Atomic Absorption Spectrometry. Analytical Letters, 2016, 49, 799-807.	1.0	7
66	Determination of Selenium in Eggs of Different Birds Using Sample Digestion in a Reflux System and Hydride Generation Atomic Fluorescence Spectrometry. Current Analytical Chemistry, 2016, 12, 102-107.	0.6	5
67	A Multiple Response Function for Optimization of Analytical Strategies Involving Multi-elemental Determination. Current Analytical Chemistry, 2016, 12, 94-101.	0.6	31
68	Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis. Talanta, 2015, 144, 39-43.	2.9	25
69	Determination of micro and macro elements in iron supplements used for treatment of anemia and evaluation employing chemometric analysis tools. RSC Advances, 2015, 5, 54046-54052.	1.7	7
70	A non-chromatographic automated system for antimony speciation in natural water exploiting multisyringe flow injection analysis coupled with online hydride generation – atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2015, 30, 1133-1141.	1.6	20
71	Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chemistry, 2015, 185, 145-150.	4.2	89
72	Analytical strategies of sample preparation for the determination of mercury in food matrices — A review. Microchemical Journal, 2015, 121, 227-236.	2.3	79

#	Article	IF	CITATIONS
73	Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil. Environmental Science and Pollution Research, 2015, 22, 8386-8391.	2.7	16
74	Determination of mercury in alcohol vinegar samples from Salvador, Bahia, Brazil. Food Control, 2015, 47, 623-627.	2.8	11
75	Determination of Flavanones in Orange Juices Obtained from Different Sources by HPLC/DAD. Journal of Analytical Methods in Chemistry, 2014, 2014, 1-5.	0.7	23
76	Analytical strategies for determination of cadmium in Brazilian vinegar samples using ET AAS. Food Chemistry, 2014, 160, 209-213.	4.2	35
77	Determination of the mineral composition of Caigua (Cyclanthera pedata) and evaluation using multivariate analysis. Food Chemistry, 2014, 152, 619-623.	4.2	13
78	Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry. Microchemical Journal, 2014, 114, 22-31.	2.3	36
79	Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry. Analytica Chimica Acta, 2014, 806, 101-106.	2.6	23
80	Multi-commuted flow system for cadmium determination in natural water by cold vapour atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 2398-2404.	1.6	11
81	Determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry. Talanta, 2014, 127, 140-145.	2.9	12
82	Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry. Talanta, 2013, 106, 293-297.	2.9	35
83	A separation system for lead fractionation in river water using electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 156-160.	1.6	2
84	Pressure-driven mesofluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultrasensitive determination of waterborne inorganic mercury. Talanta, 2013, 110, 58-65.	2.9	12
85	Determination of silver in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. Microchemical Journal, 2013, 109, 36-40.	2.3	15
86	Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 202-207.	1.1	14
87	Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH's) using Avicennia schaueriana. Marine Pollution Bulletin, 2013, 67, 130-136.	2.3	55
88	Determination of mercury in rice by MSFIA and cold vapour atomic fluorescence spectrometry. Food Chemistry, 2013, 137, 159-163.	4.2	45
89	A review of reflux systems using cold finger for sample preparation in the determination of volatile elements. Microchemical Journal, 2013, 106, 307-310.	2.3	45
90	Direct determination of gallium in bauxite employing ICP OES using the reference element technique for interference elimination. Microchemical Journal, 2013, 110, 198-201.	2.3	19

#	Article	IF	CITATIONS
91	Determination of the mineral composition of Brazilian rice and evaluation using chemometric techniques. Analytical Methods, 2013, 5, 998-1003.	1.3	15
92	Sequential Injection Analysis in Selenium Determination by HG-AAS: Optimisation and Interference Study. Current Analytical Chemistry, 2013, 9, 296-304.	0.6	2
93	Critical Evaluation of Analytical Procedures for the Determination of Lead in Seawater. Applied Spectroscopy Reviews, 2012, 47, 633-653.	3.4	4
94	Determination of lead in water samples after its separation and preconcentration by 4,5-dihydroxy-1,3-benzenedisulfonic acid functionalised polyurethane foam. International Journal of Environmental Analytical Chemistry, 2012, 92, 1121-1134.	1.8	4
95	Slurry Sampling for the Determination of Mercury in Rice Using Cold Vapor Atomic Absorption Spectrometry. Food Analytical Methods, 2012, 5, 1289-1295.	1.3	22
96	Factorial and Doehlert designs in the optimization of a separation procedure using polyurethane foam as a solid phase extractant for platinum determination in ferrous matrices using inductively coupled plasma optical emission spectroscopy. Analytical Methods, 2012, 4, 508.	1.3	10
97	Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation–graphite furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 71-72, 102-106.	1.5	24
98	Selenite biotransformation during brewing. Evaluation by HPLC–ICP-MS. Talanta, 2012, 88, 272-276.	2.9	29
99	The chemical generation of NO for the determination of nitrite by high-resolution continuum source molecular absorption spectrometry. Talanta, 2012, 98, 231-235.	2.9	26
100	Determination of the Mineral Composition of Watercress and Data Evaluation Using Multivariate Analysis. Analytical Letters, 2011, 44, 1758-1768.	1.0	4
101	Speciation analysis of inorganic antimony in airborne particulate matter employing slurry sampling and HG QT AAS. Journal of Analytical Atomic Spectrometry, 2011, 26, 1887.	1.6	20
102	Determination of cadmium in rice by electrothermal atomic absorption spectrometry using aluminum as permanent modifier. Analytical Methods, 2011, 3, 2495.	1.3	29
103	Critical study using experimental design of the determination of lead by high-resolution continuum source hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 2039.	1.6	12
104	Aluminium as chemical modifier for the determination of lead in sugar cane spirits using electrothermal atomic absorption spectrometry. Analytical Methods, 2011, 3, 1168.	1.3	10
105	Validation of a Digestion System Using a Digester Block/Cold Finger System for the Determination of Lead in Vegetable Foods by Electrothermal Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2011, 94, 942-946.	0.7	9
106	Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 529-535.	1.5	47
107	Determination and Evaluation of the Mineral Composition of Obi (Cola acuminate). Biological Trace Element Research, 2011, 143, 478-488.	1.9	1
108	Use of Multivariate Analysis Techniques for Evaluation of Analytical Data—Determination of the Mineral Composition of Cabbage (Brassica oleracea). Food Analytical Methods, 2011, 4, 286-292.	1.3	21

#	Article	IF	CITATIONS
109	Screening of Toxic Inorganic Arsenic Species in Garlic (Allium sativum L.). Food Analytical Methods, 2011, 4, 447-452.	1.3	17
110	Determination and Evaluation of the Mineral Composition of Chinese Cabbage (Beta vulgaris). Food Analytical Methods, 2011, 4, 567-573.	1.3	8
111	Optimization of the operating conditions using factorial designs for determination of uranium by inductively coupled plasma optical emission spectrometry. Microchemical Journal, 2011, 97, 113-117.	2.3	32
112	Slurry sampling and high-resolution continuum source flame atomic absorption spectrometry using secondary lines for the determination of Ca and Mg in dairy products. Microchemical Journal, 2011, 98, 231-233.	2.3	28
113	Determination of lead in aluminum and magnesium antacids using electrothermal atomic absorption spectrometry. Microchemical Journal, 2011, 98, 29-31.	2.3	10
114	Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 378-382.	1.5	32
115	On-line simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2011, 91, 1425-1435.	1.8	9
116	Homogeneity and Stability Studies During the Preparation of a Laboratory Reference Material of Soy Leaves for the Determination of Metals. Journal of AOAC INTERNATIONAL, 2011, 94, 1906-1910.	0.7	5
117	Inorganic As speciation and bioavailability in estuarine sediments of Todos os Santos Bay, BA, Brazil. Marine Pollution Bulletin, 2010, 60, 2225-2232.	2.3	46
118	Development of an analytical approach for determination of total arsenic and arsenic (III) in airborne particulate matter by slurry sampling and HG-FAAS. Microchemical Journal, 2010, 96, 46-49.	2.3	30
119	Principal component analysis and hierarchical cluster analysis for homogeneity evaluation during the preparation of a wheat flour laboratory reference material for inorganic analysis. Microchemical Journal, 2010, 95, 222-226.	2.3	40
120	Use of multivariate analysis techniques for the characterization of analytical results for the determination of the mineral composition of kale. Microchemical Journal, 2010, 96, 352-356.	2.3	30
121	Uranium determination using atomic spectrometric techniques: An overview. Analytica Chimica Acta, 2010, 674, 143-156.	2.6	136
122	Slurry Sampling—An Analytical Strategy for the Determination of Metals and Metalloids by Spectroanalytical Techniques. Applied Spectroscopy Reviews, 2010, 45, 44-62.	3.4	95
123	Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry. Talanta, 2010, 81, 1357-1359.	2.9	28
124	Determination of antimony in airborne particulate matter collected on filters using direct solid sampling and high-resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 580-584.	1.6	21
125	Mineral composition of Lippia alba (Mill.) N.E. Brown leaves. Journal of the Brazilian Chemical Society, 2010, 21, 1905-1909.	0.6	2
126	Multivariate optimization and validation of an analytical method for the determination of cadmium in wines employing ET AAS. Journal of the Brazilian Chemical Society, 2009, 20, 788-794.	0.6	12

#	Article	IF	CITATIONS
127	Biodiesel: parâmetros de qualidade e métodos analÃticos. Quimica Nova, 2009, 32, 1596-1608.	0.3	209
128	Determination of Manganese in Cassava Leaves by Slurry Sampling Flame Atomic Absorption Spectrometry. Analytical Letters, 2009, 42, 2206-2213.	1.0	16
129	Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces—A review. Analytica Chimica Acta, 2009, 647, 137-148.	2.6	134
130	Application of multivariate optimization in the development of an ultrasound-assisted extraction procedure for multielemental determination in bean seeds samples using ICP OES. Microchemical Journal, 2009, 91, 153-158.	2.3	53
131	Speciation of chromium in river water samples contaminated with leather effluents by flame atomic absorption spectrometry after separation/preconcentration by cloud point extraction. Microchemical Journal, 2009, 92, 135-139.	2.3	74
132	Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology. Microchemical Journal, 2009, 92, 58-67.	2.3	222
133	Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 597-600.	1.5	20
134	A photo-oxidation procedure using UV radiation/H2O2 for decomposition of wine samples — Determination of iron and manganese content by flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 601-604.	1.5	23
135	Application of pyridylazo and thiazolylazo reagents in flow injection preconcentration systems for determination of metals. Talanta, 2009, 79, 2-9.	2.9	25
136	Statistical mixture design development of digestion methods for Oyster tissue using inductively coupled plasma optical emission spectrometry for the determination of metallic ions. Talanta, 2009, 80, 559-564.	2.9	17
137	Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design. Talanta, 2009, 80, 974-979.	2.9	68
138	Fast method for the determination of copper, manganese and iron in seafood samples. Journal of Food Composition and Analysis, 2008, 21, 259-263.	1.9	39
139	Multivariate optimization of a solid phase microextraction-headspace procedure for the determination of benzene, toluene, ethylbenzene and xylenes in effluent samples from a waste treatment plant. Journal of Chromatography A, 2008, 1203, 99-104.	1.8	46
140	Direct determination of iron and manganese in wine using the reference element technique and fast sequential multi-element flame atomic absorption spectrometry. Talanta, 2008, 74, 699-702.	2.9	42
141	Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers. Talanta, 2008, 74, 1321-1329.	2.9	36
142	Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry. Talanta, 2008, 77, 73-76.	2.9	65
143	Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry. Talanta, 2008, 77, 400-406.	2.9	31
144	Multivariate optimization of a procedure for Cr and Co ultratrace determination in vegetal samples using GF AAS after cloud-point extraction. International Journal of Environmental Analytical Chemistry, 2008, 88, 131-140.	1.8	16

#	Article	IF	CITATIONS
145	Evaluation and Application of the Internal Standard Technique for the Direct Determination of Copper in Fruit Juices Employing Fast Sequential Flame Atomic Absorption Spectrometry. Analytical Letters, 2008, 41, 1571-1578.	1.0	11
146	A Glimpse of Recent Developments in Brazilian Analytical Chemistry. Analytical Letters, 2008, 41, 1494-1546.	1.0	1
147	Determination of Cd, Cu, and Pb after Cloud Point Extraction using Multielemental Sequential Determination by Thermospray Flame Furnace Atomic Absorption Spectrometry (TSâ€FFâ€AAS). Separation Science and Technology, 2008, 43, 815-827.	1.3	25
148	Espectrometria de absorção atômica: o caminho para determinações multi-elementares. Quimica Nova, 2008, 31, 1784-1790.	0.3	13
149	Spectrophotometric determination of arsenic in soil samples using 2-(5-bromo-2-pyridylazo)-5-di-ethylaminophenol (Br-PADAP). Ecletica Quimica, 2008, 33, 23-28.	0.2	8
150	Mineral composition of wheat flour consumed in Brazilian cities. Journal of the Brazilian Chemical Society, 2008, 19, 935-942.	0.6	36
151	Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta, 2007, 72, 349-359.	2.9	137
152	Atomic spectrometric methods for the determination of metals and metalloids in automotive fuels – A review. Talanta, 2007, 73, 1-11.	2.9	152
153	Application of Multivariate Techniques in Optimization of Spectroanalytical Methods. Applied Spectroscopy Reviews, 2007, 42, 475-491.	3.4	77
154	Methods for vanadium determination in fuel oil by GF AAS with microemulsification and acid digestion sampling. Journal of the Brazilian Chemical Society, 2007, 18, 1566-1570.	0.6	17
155	Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry. Food Chemistry, 2007, 101, 397-400.	4.2	42
156	Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 2007, 1158, 2-14.	1.8	493
157	Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 2007, 597, 179-186.	2.6	2,226
158	Development of method for the speciation of inorganic iron in wine samples. Analytica Chimica Acta, 2007, 602, 89-93.	2.6	32
159	Simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. Microchemical Journal, 2007, 87, 77-80.	2.3	68
160	Determination of zinc and copper in human hair by slurry sampling employing sequential multi-element flame atomic absorption spectrometry. Microchemical Journal, 2007, 87, 128-131.	2.3	28
161	Automatic on-line pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water. Journal of Hazardous Materials, 2007, 141, 540-545.	6.5	23
162	On-line system for preconcentration and determination of metals in vegetables by Inductively Coupled Plasma Optical Emission Spectrometry. Journal of Hazardous Materials, 2007, 148, 334-339.	6.5	65

#	Article	IF	CITATIONS
163	Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry. Journal of Hazardous Materials, 2007, 149, 264-268.	6.5	98
164	Review of procedures involving separation and preconcentration for the determination of cadmium using spectrometric techniques. Journal of Hazardous Materials, 2007, 145, 358-367.	6.5	106
165	Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 4-12.	1.5	121
166	Application of multivariate techniques for optimization of direct method for determination of lead in naphtha and petroleum condensate by electrothermal atomic absorption spectrometry. Mikrochimica Acta, 2007, 158, 321-326.	2.5	20
167	Use of cetyltrimethylammonium bromide as surfactant for the determination of copper and chromium in gasoline emulsions by electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1072-1077.	1.5	18
168	Multivariate technique for optimization of digestion procedure by focussed microwave system for determination of Mn, Zn and Fe in food samples using FAAS. Talanta, 2006, 68, 1083-1088.	2.9	84
169	Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta, 2006, 69, 16-24.	2.9	213
170	A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Analytica Chimica Acta, 2006, 575, 133-137.	2.6	67
171	Statistical design-principal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES. Analytica Chimica Acta, 2006, 580, 251-257.	2.6	66
172	Feasibility of employing permanent chemical modifiers for the determination of cadmium in coal using slurry sampling electrothermal atomic absorption spectrometry. Microchemical Journal, 2006, 82, 174-182.	2.3	26
173	Determination of manganese and zinc in powdered chocolate samples by slurry sampling using sequential multi-element flame atomic absorption spectrometry. Microchemical Journal, 2006, 82, 159-162.	2.3	32
174	A Pre-Concentration Procedure Using Cloud Point Extraction for the Determination of Manganese in Saline Effluents of a Petroleum Refinery by Flame Atomic Absorption Spectrometry. Mikrochimica Acta, 2006, 154, 149-152.	2.5	30
175	A Pre-Concentration Procedure Using Cloud Point Extraction for the Determination of Uranium in Natural Water. Mikrochimica Acta, 2006, 154, 163-167.	2.5	59
176	Determination of copper in powdered chocolate samples by slurry-sampling flame atomic-absorption spectrometry. Analytical and Bioanalytical Chemistry, 2005, 382, 1099-1102.	1.9	43
177	Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 737-742.	1.5	111
178	Field sampling system for determination of cadmium and nickel in fresh water by flame atomic absorption spectrometry. Journal of the Brazilian Chemical Society, 2005, 16, 727-732.	0.6	11
179	The use of water soluble tertiary amine reagent for solubilization and metal determination in fish muscle tissue. Journal of the Brazilian Chemical Society, 2005, 16, 69-73.	0.6	23
180	Use of factorial design for optimization of microwave-assisted digestion of lubricating oil. Journal of the Brazilian Chemical Society, 2005, 16, 1269-1274.	0.6	28

#	Article	IF	CITATIONS
181	Cloud Point Extraction as a Procedure of Separation and Preâ€Concentration for Metal Determination Using Spectroanalytical Techniques: A Review. Applied Spectroscopy Reviews, 2005, 40, 269-299.	3.4	354
182	Palladium as chemical modifier for the stabilization of volatile nickel and vanadium compounds in crude oil using graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2005, 20, 1332.	1.6	43
183	Application of multivariate technique in method development for the direct determination of copper in petroleum condensate using graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2005, 20, 127-129.	1.6	22
184	Optimisation of focused-microwave assisted digestion procedure for Kjeldahl nitrogen determination in bean samples by factorial design and Doehlert design. Talanta, 2005, 65, 710-715.	2.9	19
185	Factorial design in the optimization of preconcentration procedure for lead determination by FAAS. Talanta, 2005, 65, 895-899.	2.9	123
186	Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry. Talanta, 2005, 65, 960-964.	2.9	72
187	Behaviour of chemical modifiers in the determination of arsenic by electrothermal atomic absorption spectrometry in petroleum products. Talanta, 2005, 67, 195-204.	2.9	19
188	Multivariate optimisation of the experimental conditions for determination of three methylxanthines by reversed-phase high-performance liquid chromatography. Talanta, 2005, 67, 1007-1013.	2.9	53
189	Spectrophotometric determination of chromium in steel with 4-(2- thiazolylazo)-resorcinol (TAR) using microwave radiation. Journal of the Brazilian Chemical Society, 2004, 15, 153-157.	0.6	8
190	Factorial Design and Doehlert Matrix in Optimization of Flow System for Preconcentration of Copper on Polyurethane Foam Loaded with 4â€(2â€Pyridylazo)â€resorcinol. Analytical Letters, 2004, 37, 1437-1455.	1.0	30
191	Application of factorial design and Doehlert matrix in the optimisation of instrumental parameters for direct determination of silicon in naphtha using graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19, 246-249.	1.6	30
192	Multivariate Optimization in Preconcentration Procedure for Manganese Determination in Seawater Samples by FAAS. Mikrochimica Acta, 2004, 146, 271-278.	2.5	24
193	Doehlert matrix for optimisation of procedure for determination of nickel in saline oil-refinery effluents by use of flame atomic absorption spectrometry after preconcentration by cloud-point extraction. Analytical and Bioanalytical Chemistry, 2004, 378, 798-803.	1.9	36
194	Multivariate optimization and validation studies in on-line pre-concentration system for lead determination in drinking water and saline waste from oil refinery. Microchemical Journal, 2004, 77, 123-129.	2.3	80
195	Optimization of the preconcentration system of cadmium with 1(2-thiazolylazo)-p-cresol using a knotted reactor and flame atomic absorption spectrometric detection. Journal of Hazardous Materials, 2004, 112, 279-283.	6.5	22
196	Characterization and determination of the thermodynamic and kinetic properties of the adsorption of the molybdenum(VI)–calmagite complex onto active carbon. Journal of Colloid and Interface Science, 2004, 270, 276-280.	5.0	31
197	Use of modified rice husks as a natural solid adsorbent of trace metals: characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchemical Journal, 2004, 77, 163-175.	2.3	146
198	Procedures of Separation and Pre oncentration for Molybdenum Determination Using Atomic Spectrometry—a Review. Applied Spectroscopy Reviews, 2004, 39, 457-474.	3.4	15

#	Article	IF	CITATIONS
199	Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta, 2004, 63, 1061-1067.	2.9	511
200	Factorial design for multivariate optimization of an on-line preconcentration system for platinum determination by ultrasonic nebulization coupled to inductively coupled plasma optical emission spectrometry. Talanta, 2004, 63, 1077-1082.	2.9	22
201	Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2003, 375, 443-449.	1.9	69
202	Application of three-variables Doehlert matrix for optimisation of an on-line pre-concentration system for zinc determination in natural water samples by flame atomic absorption spectrometry. Microchemical Journal, 2003, 75, 211-221.	2.3	61
203	Application of Doehlert designs for optimisation of an on-line preconcentration system for copper determination by flame atomic absorption spectrometry. Talanta, 2003, 61, 295-303.	2.9	59
204	The determination of molybdenum in water and biological samples by graphite furnace atomic spectrometry after polyurethane foam column separation and preconcentration. Talanta, 2003, 61, 789-795.	2.9	48
205	Arsenic determination in naphtha by electrothermal atomic absorption spectrometry after preconcentration using multiple injections. Journal of Analytical Atomic Spectrometry, 2003, 18, 1267.	1.6	29
206	Application of Doehlert matrix and factorial designs in optimization of experimental variables associated with preconcentration and determination of molybdenum in sea-water by inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2002, 17, 115-120.	1.6	64
207	An on-line system for preconcentration and determination of lead in wine samples by FAAS. Talanta, 2002, 58, 475-480.	2.9	70
208	Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1939-1950.	1.5	144
209	Flow injection determination of cobalt after its sorption onto polyurethane foam loaded with 2-(2-thiazolylazo)-p-cresol (TAC). Talanta, 2001, 54, 61-67.	2.9	52
210	Molybdenum determination in iron matrices by ICP-AES after separation and preconcentration using polyurethane foam. Fresenius' Journal of Analytical Chemistry, 2001, 369, 187-190.	1.5	20
211	Solid Phase Spectrophotometry for the Determination of Cobalt in Pharmaceutical Preparations. Mikrochimica Acta, 2001, 137, 29-33.	2.5	31
212	An automated on-line flow system for the pre-concentration and determination of lead by flame atomic absorption spectrometry. Microchemical Journal, 2001, 68, 41-46.	2.3	45
213	On-line preconcentration system for lead determination in seafood samples by flame atomic absorption spectrometry using polyurethane foam loaded with 2-(2-benzothiazolylazo)-2-p-cresol. Analytica Chimica Acta, 2001, 441, 281-289.	2.6	86
214	On-line preconcentration system for nickel determination in food samples by flame atomic absorption spectrometry. Analytica Chimica Acta, 2001, 445, 145-151.	2.6	104
215	Enrichment and determination of molybdenum in geological samples and seawater by ICP-AES using calmagite and activated carbon. Analytica Chimica Acta, 2001, 426, 79-84.	2.6	49
216	An on-line continuous flow system for copper enrichment and determination by flame atomic absorption spectroscopy. Analytica Chimica Acta, 2000, 403, 259-264.	2.6	97

#	Article	IF	CITATIONS
217	A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 389-394.	1.5	20
218	Application of polyurethane foam loaded with BTAC in an on-line preconcentration system: cadmium determination by FAAS. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1497-1502.	1.5	49
219	Determination of cadmium by FAAS after on-line enrichment using a mini column packed with Amberlite XAD-2 loaded with TAM. Microchemical Journal, 2000, 65, 59-65.	2.3	48
220	Uso do violeta de alizarina N (AVN) como reagente espectrofotométrico na determinação de alumÃnio. Quimica Nova, 2000, 23, 155-160.	0.3	0
221	Nickel and zinc determination by flow-injection solid-phase spectrophotometry exploiting different sorption rates. Talanta, 2000, 51, 1027-1033.	2.9	32
222	Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite. Talanta, 2000, 50, 1253-1259.	2.9	96
223	Spectrophotometric determination of uranium using 2-(2- Thiazolylazo)-p-Cresol (TAC) in the presence of surfactants. Journal of the Brazilian Chemical Society, 1999, 10, 519-522.	0.6	39
224	An on-line solid phase extraction system using polyurethane foam for the spectrophotometric determination of nickel in silicates and alloys. Analytica Chimica Acta, 1999, 378, 287-292.	2.6	51
225	Flow-injection solid-phase spectrophotometry for the determination of zinc in pharmaceutical preparations. Analytica Chimica Acta, 1999, 383, 309-315.	2.6	45
226	Selectivity enhancement in spectrophotometry: on-line interference suppression using polyurethane foam minicolumn for aluminum determination with Methyl Thymol Blue. Analyst, The, 1999, 124, 805-808.	1.7	36
227	On-line preconcentration system for flame atomic absorption spectrometry using unloaded polyurethane foam: determination of zinc in waters and biological materials. Journal of Analytical Atomic Spectrometry, 1999, 14, 1749-1753.	1.6	46
228	Nickel determination in saline matrices by ICP-AES after sorption on Amberlite XAD-2 loaded with PAN. Talanta, 1999, 48, 1173-1177.	2.9	128
229	Separation and Preconcentration of Cobalt after Sorption onto Amberlite XAD-2 Loaded with 2-(2-Thiazolylazo)-p-cresol Analytical Sciences, 1999, 15, 189-191.	0.8	45
230	Uso de irradiação de microondas na determinação espectrofotométrica de cromo com EDTA. Quimica Nova, 1999, 22, 194-196.	0.3	7
231	Polyurethane foam as a sorbent for continuous flow analysis: Preconcentration and spectrophotometric determination of zinc in biological materials. Analytica Chimica Acta, 1998, 366, 263-269.	2.6	60
232	2-(2-Thiazolylazo)-p-cresol as a spectrophotometric reagent for vanadium determination in the presence of ascorbic acid. Mikrochimica Acta, 1998, 129, 103-106.	2.5	6
233	Spectrophotometric determination of vanadium(IV) in the presence of vanadium(V) using Br-PADAP. Mikrochimica Acta, 1998, 130, 41-45.	2.5	10
234	ICP–AES determination of small amounts of zinc in copper-base alloys after separation by adsorption of the zinc–TAN complex on Sep Pak C18 cartridges. Talanta, 1998, 46, 1279-1283.	2.9	26

#	Article	IF	CITATIONS
235	Quantitative separation of zinc traces from cadmium matrices by solid-phase extraction with polyurethane foam. Talanta, 1998, 46, 1525-1530.	2.9	22
236	Spectrophotometric Determination of Aluminium in Iron Ores Using Solid-Phase Extraction. Journal of the Brazilian Chemical Society, 1998, 9, 151-156.	0.6	8
237	Preconcentration and Determination of Copper and Zinc in Natural Water Samples by ICP-AES After Complexation and Sorption on Amberlite XAD-2. Journal of the Brazilian Chemical Society, 1998, 9, 525-530.	0.6	15
238	Determination of Nickel in Alkaline Salts by Inductively Coupled Plasma Atomic Emission Spectroscopy Using 1-(2-Thiazolylazo)-p-Cresol for Preconcentration and Separation. Analytical Letters, 1997, 30, 2251-2260.	1.0	9
239	Spectrophotometric and inductively coupled plasma atomic emission spectrometric determination of titanium in ilmenites after rapid dissolution with phosphoric acid. Talanta, 1997, 44, 165-168.	2.9	13
240	Determination of iron in alkaline salts by ICP-AES using 1-(2-Thiazolylazo)-p-cresol (TAC) for preconcentration and separation. Journal of the Brazilian Chemical Society, 1997, 8, 621-624.	0.6	12
241	Sensitive spectrophotometric determination of ascorbic acid in fruit juices and pharmaceutical formulations using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP). Fresenius' Journal of Analytical Chemistry, 1997, 357, 1174-1178.	1.5	43
242	Derivative spectrophotometric determination of nickel using Br-PADAP. Talanta, 1996, 43, 1649-1656.	2.9	29
243	Fast spectrophotometric determination of titanium in rocks with 3,4-dihydroxybenzoic acid. Mikrochimica Acta, 1996, 122, 95-99.	2.5	3
244	Spectrophotometric and derivative spectrophotometric determination of nickel with hydroxynaphthol blue. Mikrochimica Acta, 1996, 122, 109-115.	2.5	8
245	The Spectrophotometric and Derivative Spectrophotometric Determination of Cobalt in the Presence of Large Amounts of Nickel Using Br-PADAP. Journal of the Brazilian Chemical Society, 1996, 7, 109-114.	0.6	6
246	Spectrophotometric determination of zinc in copper-base alloys with TAN. Mikrochimica Acta, 1995, 118, 123-129.	2.5	10
247	Spectrophotometric determination of tin in copper-based alloys using pyrocatechol violet. Talanta, 1995, 42, 1973-1978.	2.9	27
248	Use of 1-(2-thiazolylazo) 2-naphthol in rapid determination of iron in geological matrices. Talanta, 1994, 41, 1937-1941.	2.9	13
249	Spectrophotometric and derivative spectrophotometric determination of aluminium with Hydroxynaphthol Blue. Talanta, 1994, 41, 1631-1636.	2.9	11
250	Adsorptive preconcentration for voltammetric measurements of trace levels of vanadium in the presence of copper. Analytica Chimica Acta, 1993, 271, 209-215.	2.6	15
251	2-(2-Thiazolylazo)-pcresol (TAC) as a reagent for the spectrophotometric determination of titanium (IV). Mikrochimica Acta, 1993, 111, 119-125.	2.5	7
252	Cathodic adsorptive stripping voltammetry of nickel complexed with hydroxynaphthol blue at a static mercury drop electrode. Talanta, 1993, 40, 1167-1171.	2.9	14

SéRGIO LC FERREIRA

#	Article	IF	CITATIONS
253	Simultaneous spectrophotometric determination of nickel and iron in copper-base alloy with bromo—PADAP. Talanta, 1993, 40, 1267-1271.	2.9	18
254	3,4-Dihydroxybenzoic Acid As A Reagent for the Spectrophotometric Determination of Titanium. Analytical Letters, 1993, 26, 1001-1011.	1.0	6
255	Adsorptive Preconcentration for Voltammetric Measurements of Trace Level of Iron (III) With 2- (2-) Tj ETQq1 1 0.	.784314 r 1.0	gBT /Overloo 10
256	Sequential determination of iron and titanium by flow-injection analysis. Talanta, 1992, 39, 1229-1232.	2.9	8
257	Adsorptive stripping voltammetric behaviour of copper complexes of some heterocyclic azo compounds. Talanta, 1992, 39, 1245-1253.	2.9	18
258	2-(2-Thiazolylazo)-p-cresol (TAC) as a reagent for the spectrophotometric determination of indium(III). Microchemical Journal, 1991, 44, 63-66.	2.3	15
259	2-(2-Thiazolylazo)-p-cresol(TAC) as a Reagent for the Spectrophotometric Determination of Lead(II). Analytical Letters, 1991, 24, 1675-1684.	1.0	33
260	Spectrophotometric determination of nickel in copper-base alloy with 2-(2-thiazolylazo)-p-cresol. Talanta, 1988, 35, 485-486.	2.9	11