Ting Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311049/publications.pdf

Version: 2024-02-01

279798 395702 1,707 104 23 33 citations h-index g-index papers 104 104 104 1409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors. Chinese Journal of Chemical Engineering, 2023, 53, 243-250.	3.5	O
2	Facile one-pot synthesis of a BiOBr/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity for tetracycline degradation. Chinese Journal of Chemical Engineering, 2023, 53, 222-231.	3.5	6
3	ZiF-8-derived P, N-co-doped hierarchical carbon: synergistic and high-efficiency desulfurization adsorbents. Chemical Engineering Journal, 2022, 429, 132458.	12.7	31
4	Molecular dynamics simulation of mass transfer characteristics of DMSO at the hexane/water interface in the presence of amphiphilic Janus nanoparticles. Chemical Engineering Science, 2022, 248, 117231.	3.8	4
5	Stimuli-responsive emulsions: Recent advances and potential applications. Chinese Journal of Chemical Engineering, 2022, 41, 193-209.	3.5	21
6	Rational Design and Screening of Ionic Liquid Absorbents for Simultaneous and Stepwise Separations of SO ₂ and CO ₂ from Flue Gas. Industrial & Engineering Chemistry Research, 2022, 61, 2548-2561.	3.7	5
7	Selective adsorption towards heavy metal ions on the green synthesized polythiophene/MnO2 with a synergetic effect. Journal of Cleaner Production, 2022, 338, 130536.	9.3	22
8	A novel Zr-MOF modified by 4,6-Diamino-2-mercaptopyrimidine for exceptional Hg (II) removal. Journal of Water Process Engineering, 2022, 46, 102606.	5.6	7
9	Preparation of Zr-Based Phosphotungstic Acid Catalyst, ZrPTA _{<i>X</i>} -BTC, and Its Application in Ultradeep and Fast Oxidative Desulfurization of Fuels. Industrial & Engineering Chemistry Research, 2022, 61, 977-986.	3.7	5
10	Intensification of oxidative desulfurization by Zr(IV)-ionic liquid-HPW composite activating H2O2 system and mechanism insight. Fuel, 2022, 322, 124231.	6.4	10
11	Droplet breakup in the square microchannel with a short square constriction to generate slug flow. AICHE Journal, 2022, 68, .	3.6	5
12	Synergistic effect of –COOH and Zr(IV) with a short distance in Zr-MOFs for promoting utilization of H2O2 in oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2022, 111, 480-489.	5.8	O
13	lonic liquid grafted NH2-UiO-66 as heterogeneous solid acid catalyst for biodiesel production. Fuel, 2022, 324, 124537.	6.4	29
14	Enhanced solvent extraction in a serial converging-diverging microchannel at high injection ratio. Chemical Engineering Science, 2022, 259, 117845.	3.8	6
15	A new method for measuring the dynamic interfacial tension for flowing droplets of three-phase emulsion in the channel. Chemical Engineering Journal, 2022, 449, 137852.	12.7	2
16	Novel multi–SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy and Environment, 2021, 6, 271-282.	8.7	31
17	Unraveling the reaction route and kinetics of 3â€methylâ€3â€pentenâ€2â€one synthesis for synthetic ketone fragrances. Journal of Chemical Technology and Biotechnology, 2021, 96, 48-63.	3.2	5
18	Reaction kinetic studies on the immobilized-lipase catalyzed enzymatic resolution of 1-phenylethanol transesterification with ethyl butyrate. Biocatalysis and Biotransformation, 2021, 39, 29-40.	2.0	5

#	Article	IF	CITATIONS
19	Highly selective removal of 2,4-dinitrotoluene for industrial wastewater treatment through hyper-cross-linked resins. Journal of Cleaner Production, 2021, 288, 125128.	9.3	6
20	The preparation of peppermint oil/2-hydroxypropyl- \hat{l}^2 -cyclodextrin/chitosan composite microcapsule and their prolonged retaining ability. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	3
21	One-step fabrication of polymeric self-solidifying ionic liquids as the efficient catalysts for biodiesel production. Journal of Cleaner Production, 2021, 292, 125967.	9.3	17
22	Polymeric ionic liquids (PILs) with high acid density: Tunable catalytic performance for biodiesel production. Chinese Journal of Chemical Engineering, 2021, 38, 266-275.	3.5	3
23	Design and synthesis of novel amphipathic ionic liquids for biodiesel production from soapberry oil. Renewable Energy, 2021, 168, 779-790.	8.9	6
24	Machine learning-based ionic liquids design and process simulation for CO2Âseparation from flue gas. Green Energy and Environment, 2021, 6, 432-443.	8.7	31
25	Effect of nanoparticles on interfacial mass transfer characteristics and mechanisms in liquid-liquid extraction by molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2021, 173, 121236.	4.8	8
26	Asymmetric behaviors of interface-stabilized slug pairs in a T-junction microchannel reactor. Chemical Engineering Science, 2021, 240, 116668.	3.8	8
27	Reaction kinetics for the heterogeneously resin-catalyzed and homogeneously self-catalyzed esterification of thioglycolic acid with 2-ethyl-1-hexanol. Chinese Journal of Chemical Engineering, 2021, 36, 111-119.	3.5	5
28	A method to fabricate supported catalytic packing: Polydopamine as a "Double-Sided Adhesive" to prepare the fully covered seeding layer. Journal of the Taiwan Institute of Chemical Engineers, 2021, 132, 104116-104116.	5.3	1
29	Porosity Design on Conjugated Microporous Poly(Aniline)S for Exceptional Mercury(II) Removal. ACS Applied Materials & amp; Interfaces, 2021, 13, 61653-61660.	8.0	27
30	Thermophysical properties of 4-dimethylaminopyridine based ionic liquids. Journal of Molecular Liquids, 2020, 297, 111875.	4.9	5
31	A multi-scale approach to optimize vapor-liquid mass transfer layer in structured catalytic packing. Chemical Engineering Science, 2020, 214, 115434.	3.8	9
32	Volume averaging theory (VAT) based modeling for longitudinal mass dispersion in structured porous medium with porous particles. Chemical Engineering Research and Design, 2020, 153, 582-591.	5.6	8
33	Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids. Energy, 2020, 211, 118631.	8.8	22
34	Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers. Journal of Materials Chemistry A, 2020, 8, 22657-22665.	10.3	32
35	Ionic Liquid@Amphiphilic Silica Nanoparticles: Novel Catalysts for Converting Waste Cooking Oil to Biodiesel. ACS Sustainable Chemistry and Engineering, 2020, 8, 18054-18061.	6.7	22
36	Multiphase flow and multicomponent reactive transport study in the catalyst layer of structured catalytic packings for the direct hydration of cyclohexene. Chemical Engineering and Processing: Process Intensification, 2020, 158, 108199.	3.6	5

#	Article	IF	Citations
37	Binary Isobaric Vapor–Liquid Equilibrium for the System of 1-Phenylethanol + Ethyl Butyrate + Ethanol +1-Phenylethyl Butyrate at 101.3 kPa. Journal of Chemical & Engineering Data, 2020, 65, 2558-2565.	1.9	4
38	Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties. Microfluidics and Nanofluidics, 2020, 24, 1 .	2.2	15
39	Self-Reducible Conjugated Microporous Polyaniline for Long-Term Selective Cr(VI) Detoxication Driven by Tunable Pore Dimension. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28681-28691.	8.0	23
40	In situ bridging encapsulation of a carboxyl-functionalized phosphotungstic acid ionic liquid in UiO-66: A remarkable catalyst for oxidative desulfurization. Chemical Engineering Science, 2020, 225, 115818.	3.8	58
41	Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chemical Engineering Science, 2020, 226, 115838.	3.8	32
42	Preparation of a Fe-ZSM-5 Adsorbent and Its Selective Adsorption of <i>p</i> -Xylene Performance Exploration. Journal of Chemical & Exploration. Journal of C	1.9	2
43	Synthesis of ionic-liquid-functionalized UiO-66 framework by post-synthetic ligand exchange for the ultra-deep desulfurization. Fuel, 2020, 268, 117336.	6.4	35
44	Fatty Acid Methyl Ester Synthesis through Transesterification of Palm Oil with Methanol in Microchannels: Flow Pattern and Reaction Kinetics. Energy & Energy & 2020, 34, 3628-3639.	5.1	19
45	Self-Solidifying Quaternary Phosphonium-Containing Ionic Liquids as Efficient and Reusable Catalysts for Biodiesel Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 6956-6963.	6.7	25
46	From Batch to Continuous Sustainable Production of 3-Methyl-3-penten-2-one for Synthetic Ketone Fragrances. ACS Sustainable Chemistry and Engineering, 2020, 8, 17201-17214.	6.7	8
47	Porous polymer microsphere functionalized with benzimidazolium based ionic liquids as effective solid catalysts for esterification. Chinese Journal of Chemical Engineering, 2019, 27, 2455-2466.	3.5	7
48	A joint model for calculating capillary pressure of confined fluid based on the SWCF-VR equation of state. Fluid Phase Equilibria, 2019, 498, 59-71.	2.5	2
49	Design and Optimization of Sustainable Pressure Swing Distillation for Minimum-Boiling Azeotrope Separation. Industrial & Discourse Engineering Chemistry Research, 2019, 58, 21659-21670.	3.7	26
50	Acidic chitosan membrane as an efficient catalyst for biodiesel production from oleic acid. Renewable Energy, 2019, 143, 1488-1499.	8.9	16
51	Lattice Boltzmann simulation of intraparticle diffusivity in porous pellets with macro-mesopore structure. International Journal of Heat and Mass Transfer, 2019, 138, 1014-1028.	4.8	19
52	Self-solidification ionic liquids as heterogeneous catalysts for biodiesel production. Green Chemistry, 2019, 21, 3182-3189.	9.0	35
53	Experimental study on mass transport mechanism in poly (styrene-co-divinylbenzene) microspheres with hierarchical pore structure. Chemical Engineering and Processing: Process Intensification, 2019, 139, 183-192.	3.6	8
54	Design and Synthesis of Ionic Liquid Supported Hierarchically Porous Zr Metal–Organic Framework as a Novel BrÂ,nsted–Lewis Acidic Catalyst in Biodiesel Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 1123-1132.	3.7	60

#	Article	IF	CITATIONS
55	Liquid–Liquid Equilibria for the Ternary Systems of Water + Thioglycolic Acid + 2-Ethyl-1-hexyl Thioglycolate and Water + 2-Ethyl-1-hexyl Thioglycolate + 2-Ethyl-1-hexanol at 293.15, 303.15, and 313.15 K under 101 kPa. Journal of Chemical & Engineering Data, 2019, 64, 477-483.	1.9	4
56	Lattice Boltzmann simulation of asymptotic longitudinal mass dispersion in reconstructed random porous media. AICHE Journal, 2018, 64, 2770-2780.	3.6	14
57	Novel triazolium-based ionic liquids as effective catalysts for transesterification of palm oil to biodiesel. Journal of Molecular Liquids, 2018, 249, 732-738.	4.9	32
58	Design and synthesis of novel BrÃ,nsted-Lewis acidic ionic liquid and its application in biodiesel production from soapberry oil. Energy Conversion and Management, 2018, 166, 318-327.	9.2	44
59	Densities and viscosities of binary mixtures N , N -dimethyl-N-(3-sulfopropyl)cyclohexylammonium tosylate with water and methanol at T = $(303.15 \text{ to } 328.15) \text{ K}$. Journal of Molecular Liquids, 2017, 229, 389-395.	4.9	23
60	Preparation and shaping of solid acid SO42â^'/TiO2 and its application for esterification of propylene glycol monomethyl ether and acetic acid. Chinese Journal of Chemical Engineering, 2017, 25, 1207-1216.	3.5	13
61	Selective Adsorption of <i>p</i> -Xylene from Pure Terephthalic Acid Wastewater on Modified and Formed Zeolites. Journal of Chemical & Data, 2017, 62, 1047-1057.	1.9	4
62	Critical condition for bubble breakup in a microfluidic flow-focusing junction. Chemical Engineering Science, 2017, 164, 178-187.	3.8	20
63	Synthesis of biodiesel via transesterification of tung oil catalyzed by new Brönsted acidic ionic liquid. Chemical Engineering Research and Design, 2017, 117, 584-592.	5.6	23
64	Upscaling multicomponent transport in porous media with a linear reversible heterogeneous reaction. Chemical Engineering Science, 2017, 171, 100-116.	3.8	16
65	Density, Viscosity, and Vapor–Liquid Equilibrium Data for the Binary Mixture at Atmosphere Pressure: Cyclopropyl Methyl Ketone + 2-Acetylbutyrolactone, Cyclopropyl Methyl Ketone + 5-Chloro-2-pentanone. Journal of Chemical & Engineering Data, 2017, 62, 3642-3650.	1.9	4
66	Optimization of process-specific catalytic packing in catalytic distillation process: A multi-scale strategy. Chemical Engineering Science, 2017, 174, 472-486.	3.8	15
67	Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel. Energy Conversion and Management, 2017, 153, 649-658.	9.2	39
68	Transesterification of palm oil to biodiesel using BrÃ,nsted acidic ionic liquid as high-efficient and eco-friendly catalyst. Chinese Journal of Chemical Engineering, 2017, 25, 1222-1229.	3.5	30
69	High Conversion of Methyl Acetate Hydrolysis in a Reactive Dividing Wall Column by Weakening the Self-Catalyzed Esterification Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 9177-9187.	3.7	13
70	Simulation study of direct hydration of cyclohexene to cyclohexanol using isophorone as cosolvent. Chemical Engineering Research and Design, 2017, 117, 346-354.	5.6	17
71	Liquid - liquid equilibrium for the quaternary reaction system waterÂ+Âsec-butyl alcoholÂ+Âsec-butyl acetateÂ+Âacetic acid. Fluid Phase Equilibria, 2017, 432, 70-75.	2.5	11
72	Feasibility Study of Reactive Distillation for the Production of Propylene Glycol Monomethyl Ether Acetate through Transesterification. Industrial & Engineering Chemistry Research, 2017, 56, 7149-7159.	3.7	22

#	Article	IF	Citations
73	Noble Metal Decoration and Presulfation on TiO2: Increased Photocatalytic Activity and Efficient Esterification ofn-Butanol with Citric Acid. International Journal of Photoenergy, 2016, 2016, 1-12.	2.5	5
74	The synthesis of biodiesel from coconut oil using novel Brønsted acidic ionic liquid as green catalyst. Chemical Engineering Journal, 2016, 296, 71-78.	12.7	66
75	Application of Brönsted acid ionic liquids as green catalyst in the synthesis of 2-propanol with reactive distillation. Chinese Journal of Chemical Engineering, 2016, 24, 1561-1569.	3.5	11
76	Supported ionic liquids as green catalyst for 2â€butanol synthesis from transesterification of <i>sec</i> â€butyl acetate. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 901-909.	1.5	12
77	Reaction kinetics for synthesis of isopropyl myristate catalyzed by sulfated titania. Korean Journal of Chemical Engineering, 2016, 33, 2478-2485.	2.7	5
78	Isobaric vapor–liquid equilibrium of trifluoroacetic acid+water, trifluoroacetic acid+ethyl trifluoroacetate and ethyl trifluoroacetate+ ethanol binary mixtures. Fluid Phase Equilibria, 2016, 408, 88-93.	2.5	12
79	Reaction kinetics for synthesis of sec-butyl alcohol catalyzed by acid-functionalized ionic liquid. Chinese Journal of Chemical Engineering, 2015, 23, 106-111.	3.5	12
80	Isobaric vapor–liquid equilibrium of the binary system sec-butyl acetate +para-xylene and the quaternary system methyl acetate +para-xylene +sec-butyl acetate + acetic acid at 101.3 kPa. Fluid Phase Equilibria, 2015, 402, 50-55.	2.5	12
81	Study on the esterification for ethylene glycol diacetate using supported ionic liquids as catalyst: Catalysts preparation, characterization, and reaction kinetics, process. Chemical Engineering Journal, 2015, 280, 147-157.	12.7	61
82	Upscaling solute concentration transport equations of countercurrent dialyzer systems. Chemical Engineering Science, 2015, 134, 108-118.	3.8	7
83	Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate. Journal of Chemical Thermodynamics, 2015, 86, 75-79.	2.0	13
84	Isobaric vapor–liquid equilibria of the binary mixtures propylene glycol methyl ether+propylene glycol methyl ether acetate, methyl acetate+propylene glycol methyl ether and methanol+propylene glycol methyl ether acetate at 101.3kPa. Fluid Phase Equilibria, 2014, 367, 45-50.	2.5	17
85	Novel Procedure for the Synthesis of Dimethyl Carbonate by Reactive Distillation. Industrial & Engineering Chemistry Research, 2014, 53, 3321-3328.	3.7	20
86	Synthesis of Methacrylic Anhydride by Batch Reactive Distillation: Reaction Kinetics and Process. Industrial & Engineering Chemistry Research, 2014, 53, 17317-17324.	3.7	9
87	Novel Procedure for Production of Isopropanol by Transesterification of Isopropyl Acetate with Reactive Distillation. Industrial & Engineering Chemistry Research, 2014, 53, 13881-13891.	3.7	25
88	A benign preparation of sec-butanol via transesterification from sec-butyl acetate using the acidic Imidazolium ionic liquids as catalysts. Chemical Engineering Journal, 2014, 246, 366-372.	12.7	37
89	Isobaric vapor–liquid equilibrium data for the binary system methyl acetate+isopropyl acetate and the quaternary system methyl acetate+methanol+isopropanol+isopropyl acetate at 101.3kPa. Fluid Phase Equilibria, 2013, 344, 79-83.	2.5	28
90	Residue curve maps of ethyl acetate synthesis reaction. Journal of Central South University, 2013, 20, 50-55.	3.0	7

#	Article	IF	CITATIONS
91	Experimental Measurements of Vapor–Liquid Equilibrium Data for the Binary Systems of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate, and Methyl Acetate + 2-Butyl Acetate at 101.33 kPa. Journal of Chemical & Data, 2013, 58, 1827-1832.	1.9	22
92	Study on Feasibility of Reactive Distillation Process for the Direct Hydration of Cyclohexene to Cyclohexanol Using a Cosolvent. Industrial & Engineering Chemistry Research, 2013, 52, 8139-8148.	3.7	24
93	Reply to "Comments on â€~Experimental Measurements of Vapor–Liquid Equilibrium Data for the Binary System of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate and Methyl Acetate + 2-Butyl Acetate at 101.33 kPa'―Journal of Chemical & Engineering Data, 2013, 58, 3567-3568.	1.9	0
94	Extraction and Purification of Polyphenolic Compounds Obtained from Hsian-Tsao (<i>Mesona) Tj ETQq0 0 0 rgB</i>	T /Oyerlo	ck <u>1</u> 0 Tf 50 6
95	Antioxidant Activities of Crude Extract and Chromatographic Fraction from Hsian-Tsao (<i>Mesona) Tj ETQq1 1 0</i>	.784314	rgBT /Overlo
96	Reactive Distillation for Producing n-Butyl Acetate: Experiment and Simulation. Chinese Journal of Chemical Engineering, 2012, 20, 980-987.	3.5	26
97	Novel Procedure for Coproduction of Ethyl Acetate and <i>n-</i> Butyl Acetate by Reactive Distillation. Industrial & Distillation	3.7	20
98	Adsorption Thermodynamics and Kinetics of <i>p</i> -Xylene on Activated Carbon. Journal of Chemical & Engineering Data, 2012, 57, 1551-1556.	1.9	68
99	Liquid–liquid equilibrium for the system water+1,4-dioxane+cyclohexanol over the temperature range of 313.2–343.2K. Fluid Phase Equilibria, 2012, 324, 28-32.	2.5	9
100	Notice of Retraction: Simulation studies of reactive distillation processes for synthesis of ethyl acetate. , $2010, , .$		0
101	Liquidâ^'Liquid Equilibrium for the System Water + 1,4-Dioxane + 2,6-Dimethyloct-7-en-2-ol over the Temperature Range of (343.2 to 358.2) K. Journal of Chemical & Engineering Data, 2010, 55, 558-560.	1.9	8
102	Recovery of Co(II) and Mn(II) from Pure Terephthalic Acid Wastewater. Journal of Chemical & Samp; Engineering Data, 2010, 55, 2399-2404.	1.9	9
103	Liquid–liquid phase equilibria of the ternary system of water/1,4-dioxane/dihydromyrcene. Fluid Phase Equilibria, 2009, 280, 84-87.	2.5	9
104	Adsorption of Co(II) and Mn(II) ions from pure terephthalic acid wastewater onto Na-bentonite. Desalination and Water Treatment, 0 , , $1-11$.	1.0	0