List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1310754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tectonics of the Continental Interior in the United States. , 2021, , 173-186.		3
2	Focusing fluids in faults: Evidence from stable isotopic studies of dated clayâ€rich fault gouge of the Alberta Rockies. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009868.	2.5	1
3	Deconstructing Tectonics: Ten Animated Explorations. Earth and Space Science, 2020, 7, e2019EA000989.	2.6	2
4	Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 2020, 369, 1338-1343.	12.6	202
5	Thank You Earth's Future Reviewers in 2019. Earth's Future, 2020, 8, e2020EF001536.	6.3	0
6	Locally Derived, Meteoric Fluid Infiltration Was Responsible for Widespread Late Paleozoic Illite Authigenesis in the Appalachian Basin. Tectonics, 2020, 39, e2020TC006137.	2.8	2
7	METEORIC SOURCE OF GEOFLUIDS IN THE CENTRAL APPALACHIANS FOLD-THRUST BELT AND FORELAND CHALLENGES OROGENIC FLUID EXPULSION HYPOTHESIS; EVIDENCE FROM REGIONAL CLAY DIAGENESIS. , 2020, , .		0
8	FAULT GOUGE DATING IN THE SPANISH PYRENEES: SHORTENING RATES, THERMAL CONSTRAINTS ON CLAY GOUGE FORMATION, AND CATACLASTIC AGE INTERPRETATION. , 2020, , .		0
9	All Together Now: Reflecting on Earth's Future 's Formative Years. Eos, 2020, 101, .	0.1	0
10	Toward a Resilient Global Society: Air, Sea Level, Earthquakes, and Weather. Earth's Future, 2019, 7, 854-864.	6.3	7
11	Thank you to Earth's Future Reviewers in 2018. Earth's Future, 2019, 7, 584-586.	6.3	0
12	Evolution of a rapidly slipping, active low-angle normal fault, Suckling-Dayman metamorphic core complex, SE Papua New Guinea. Bulletin of the Geological Society of America, 2019, 131, 1333-1363.	3.3	26
13	In situ Th/Pb dating of monazite in fibrous veins: Direct dating of veins and deformation in the shallow upper crust of the Mexican Orogen. Journal of Structural Geology, 2019, 124, 136-142.	2.3	5
14	Surface fluids in the evolving Sevier fold–thrust belt of ID–WY indicated by hydrogen isotopes in dated, authigenic clay minerals. Earth and Planetary Science Letters, 2019, 513, 29-39.	4.4	9
15	Concurrence of folding and remagnetization events in the Monterrey Salient (NE Mexico). Tectonophysics, 2019, 760, 58-68.	2.2	0
16	CHALLENGING THE OROGENIC FLUID EXPULSION ("SQUEEGEEâ€) HYPOTHESIS; EVIDENCE FROM CLAYS IN T CENTRAL APPALACHIANS OROGEN AND FORELAND. , 2019, , .	HE	0
17	Quantitative X-Ray Powder Diffraction and the Illite Polytype Analysis Method for Direct Fault Rock Dating: A Comparison of Analytical Techniques. Clays and Clay Minerals, 2018, 66, 220-232.	1.3	15
18	Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand); O-H-Ar isotopic, XRD and chemical analysis of illite and chlorite. Journal of Structural Geology, 2018, 111, 27-41.	2.3	7

#	Article	IF	CITATIONS
19	THE FLUIDS OF OROGENY; O-H ISOTOPIC ANALYSIS OF REGIONAL, DATED CLAY-RICH FAULT GOUGE IN THE ALBERTA ROCKIES, CANADA. , 2018, , .		0
20	THE MYSTERIOUS US MIDCONTINENT: A GEOLOGIC HISTORY PRESERVED IN NEGATIVE TOPOGRAPHY. , 2018, , .		0
21	We Can Work It Out: Avoiding Disasters. Eos, 2018, 99, .	0.1	0
22	Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite–ash–mudstone sequence using K–Ar and 40Ar/39Ar isotopes. International Journal of Earth Sciences, 2017, 106, 255-268.	1.8	4
23	Meteoric fluid infiltration in the Argentine Precordillera fold-and-thrust belt: Evidence from H isotopic studies of neoformed clay minerals. Lithosphere, 2017, 9, 134-145.	1.4	12
24	Mineral characterization, clay quantification and Ar–Ar dating of faulted schists in the Carboneras and Palomares Faults (Betic Cordillera, SE Spain). European Journal of Mineralogy, 2017, 29, 17-34.	1.3	9
25	Thank you reviewers of <i>Earth's Future</i> in 2016. Earth's Future, 2017, 5, 542-544.	6.3	0
26	Earth and Space Science for the Benefit of Humanity. Eos, 2017, 98, .	0.1	5
27	SYN-DEFORMATIONAL INFILTRATION OF SURFACE-DERIVED FLUIDS ALONG FAULT ZONES IN THE IDAHO-WYOMING SALIENT, SEVIER FOLD-THRUST BELT: CONSTRAINTS FROM PAIRED RADIOGENIC AND STABLE ISOTOPIC ANALYSIS OF AUTHIGENIC CLAYS. , 2017, , .		0
28	Good Night Sunshine: Geoengineering Solutions to Climate Change?. Eos, 2017, 98, .	0.1	0
29	Thank you to 2015 reviewers ofEarth's Future. Earth's Future, 2016, 4, 92-93.	6.3	0
30	Do magnetic fabrics of marine deposits preserve orbital forcing? A test case in the Southern Ocean, Antarctic Peninsula. Lithosphere, 2016, 8, 751-756.	1.4	1
31	XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico). Geochimica Et Cosmochimica Acta, 2016, 181, 201-216.	3.9	28
32	Remagnetization and folding in the frontal Montana Rocky Mountains. Lithosphere, 2016, 8, 716-728.	1.4	5
33	Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by δ ¹⁸ O and δ ² H geochemistry and ⁴⁰ Ar/ ³⁹ Ar dating of neoformed clays in brittle fault rocks. Lithosphere, 2016, 8, 587-600.	1.4	25
34	FAULTS AND ILLITE: SOURCES, PATHWAYS AND TIMING OF GEOFLUIDS. , 2016, , .		0
35	FROM FAULT DATES TO OROGENIC RATES. , 2016, , .		0
36	Here Comes the Anthropocene. Eos, 2016, 97, .	0.1	0

#	Article	IF	CITATIONS
37	Hydrogen and ⁴⁰ <scp>A</scp> r/ ³⁹ <scp>A</scp> r isotope evidence for multiple and protracted paleofluid flow events within the longâ€lived <scp>N</scp> orth <scp>A</scp> natolian <scp>K</scp> eirogen (<scp>T</scp> urkey). Geochemistry, Geophysics, Geosystems, 2015, 16, 1975-1987.	2.5	23
38	Thank youEarth's Futurereviewers. Earth's Future, 2015, 3, 219-219.	6.3	0
39	Orogenic pulses in the Alberta Rocky Mountains: Radiometric dating of major faults and comparison with the regional tectono-stratigraphic record. Bulletin of the Geological Society of America, 2015, 127, 480-502.	3.3	64
40	Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand. New Zealand Journal of Geology, and Geophysics, 2015, 58, 13-21.	1.8	27
41	Dating synfolding remagnetization: Approach and field application (central Sierra Madre Oriental,) Tj ETQq1 1 ().784314 rş	gBT ₇ /Overlock
42	Response of natural smectite to seismogenic heating and potential implications for the 2011 Tohoku earthquake in the Japan Trench. Geology, 2015, 43, 755-758.	4.4	30
43	Fault Zone (Thermochronology). Encyclopedia of Earth Sciences Series, 2015, , 269-274.	0.1	3
44	Fault Zone (Thermochronology). , 2014, , 1-8.		0
45	Fault gouge dating in the Southern Appalachians, USA. Bulletin of the Geological Society of America, 2014, 126, 639-651.	3.3	18
46	Hello Anthropocene, Goodbye Holocene. Earth's Future, 2014, 2, 566-568.	6.3	6
47	Progressive, episodic deformation in the Mexican Fold–Thrust Belt (central Mexico): evidence from isotopic dating of folds and faults. International Geology Review, 2014, 56, 734-755.	2.1	40
48	Newly-formed illite preserves fluid sources during folding of shale and limestone rocks; an example from the Mexican Fold-Thrust Belt. Earth and Planetary Science Letters, 2014, 391, 263-273.	4.4	16
49	Low-temperature AMS and the quantification of subfabrics in deformed rocks. Tectonophysics, 2014, 629, 55-62.	2.2	16
50	A "slice-and-view―(FIB–SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at â^¼2.7Âkm depth. Journal of Structural Geology, 2014, 69, 234-244.	2.3	29
51	Modification of mudstone fabric and pore structure as a result of slope failure: Ursa Basin, Gulf of Mexico. Marine Geology, 2013, 341, 58-67.	2.1	11
52	Fold dating: A new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks. Journal of Structural Geology, 2013, 54, 174-179.	2.3	36
53	Earth's Future: Navigating the science of the Anthropocene. Earth's Future, 2013, 1, 1-2.	6.3	8
54	Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 2013, 51, 206-225.	2.3	121

#	Article	IF	CITATIONS
55	Constraining clay hydration state and its role in active fault systems. Geochemistry, Geophysics, Geosystems, 2013, 14, 1039-1052.	2.5	21
56	Timing of lapetus Ocean rifting from Ar geochronology of pseudotachylytes in the St. Lawrence rift system of southern Quebec. Geology, 2012, 40, 443-446.	4.4	28
57	Chlorite-smectite clay minerals and fault behavior: New evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere, 2012, 4, 209-220.	1.4	53
58	Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. Journal of Structural Geology, 2012, 43, 2-32.	2.3	77
59	Variation of illite/muscovite 40Ar/39Ar age spectra during progressive low-grade metamorphism: an example from the US Cordillera. Contributions To Mineralogy and Petrology, 2012, 164, 521-536.	3.1	38
60	A focus on science, engineering, and education for sustainability. Eos, 2012, 93, 1-3.	0.1	9
61	The International Opportunities Fund for global change research. Eos, 2012, 93, 257-258.	0.1	2
62	Sustainability needs the geosciences. Eos, 2012, 93, 441-441.	0.1	2
63	The fabric of consolidation in Gulf of Mexico mudstones. Marine Geology, 2012, 295-298, 77-85.	2.1	47
64	Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, 2011, 304, 520-526.	4.4	220
65	Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, 2011, 307, 180-190.	4.4	67
66	Natural fault lubricants. Nature Geoscience, 2011, 4, 217-218.	12.9	18
67	Preferred orientation of phyllosilicates: Effects of composition and stress on resedimented mudstone microfabrics. Journal of Structural Geology, 2011, 33, 1347-1358.	2.3	32
68	Variations in the Illite to Muscovite Transition Related to Metamorphic Conditions and Detrital Muscovite Content: Insight from the Paleozoic Passive Margin of the Southwestern United States. Journal of Geology, 2011, 119, 419-437.	1.4	32
69	Foreland signature of indenter tectonics: Insights from calcite twinning analysis in the Tennessee salient of the Southern Appalachians, USA. Lithosphere, 2011, 3, 317-327.	1.4	10
70	Thermochronology of the Salt Spring fault: Constraints on the evolution of the South Virgin–White Hills detachment system, Nevada and Arizona, USA. , 2011, 7, 774-784.		6
71	Fabric anisotropy induced by primary depositional variations in the silt: clay ratio in two fine-grained slope fan complexes: Texas Gulf Coast and northern North Sea. Sedimentary Geology, 2010, 226, 42-53.	2.1	55
72	Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California. Geology, 2010, 38, 667-670.	4.4	121

#	Article	IF	CITATIONS
73	Dating the detachment fault system of the Ruby Mountains, Nevada: Significance for the kinematics of low-angle normal faults. Tectonics, 2010, 29, n/a-n/a.	2.8	35
74	Cretaceous age, composition, and microstructure of pseudotachylyte in the Otago Schist, New Zealand. New Zealand Journal of Geology, and Geophysics, 2010, 53, 15-29.	1.8	8
75	On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3Âkm vertical depth (SAFOD drillhole at Parkfield, California). Contributions To Mineralogy and Petrology, 2009, 157, 173-187.	3.1	53
76	Remagnetization in the Tennessee salient, Southern Appalachians, USA: Constraints on the timing of deformation. Tectonophysics, 2009, 474, 709-722.	2.2	9
77	Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior. Tectonophysics, 2009, 475, 554-562.	2.2	49
78	A physical record of the Antarctic Circumpolar Current: Late Miocene to recent slowing of abyssal circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 275, 28-36.	2.3	20
79	Mid-Pliocene to Recent abyssal current flow along the Antarctic Peninsula: Results from ODP Leg 178, Site 1101. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 120-128.	2.3	3
80	Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution. Journal of Geophysical Research, 2009, 114, .	3.3	80
81	Constraints on mineralization, fluidâ€rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole. Journal of Geophysical Research, 2009, 114, .	3.3	35
82	Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A). Sedimentary Geology, 2008, 208, 27-35.	2.1	34
83	Clay quantification and Ar–Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. Journal of Structural Geology, 2008, 30, 525-538.	2.3	130
84	Differential displacement and rotation in thrust fronts: A magnetic, calcite twinning and palinspastic study of the Jones Valley thrust, Alabama, US Appalachians. Journal of Structural Geology, 2008, 30, 725-738.	2.3	12
85	Paleomagnetic reorientation of San Andreas Fault Observatory at Depth (SAFOD) core. Geophysical Research Letters, 2008, 35, .	4.0	6
86	Diagenetic Reorientation of Phyllosilicate Minerals in Paleogene Mudstones of the Podhale Basin, Southern Poland. Clays and Clay Minerals, 2008, 56, 100-111.	1.3	74
87	The age and depth of exhumed friction melts along the Alpine fault, New Zealand. Geology, 2007, 35, 603.	4.4	22
88	Early rotation and late folding in the Pennsylvania salient (U.S. Appalachians): Evidence from calcite-twinning analysis of Paleozoic carbonates. Bulletin of the Geological Society of America, 2007, 119, 796-804.	3.3	31
89	Reconstructing the Snake River–Hoback River Canyon section of the Wyoming thrust belt through direct dating of clay-rich fault rocks. , 2007, , 183-196.		10
90	Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses: REPLY: REPLY. Geology, 2007, 35, e151-e151.	4.4	1

6

#	Article	IF	CITATIONS
91	Late Paleoproterozoic (geon 18 and 17) reactivation of the Neoarchean Great Lakes Tectonic Zone, northern Michigan, USA: Evidence from kinematic analysis, thermobarometry and 40Ar/39Ar geochronology. Precambrian Research, 2007, 157, 144-168.	2.7	15
92	Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 2007, 256, 147-161.	4.4	75
93	Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics in deep-sea sediments at the Antarctic Peninsula Pacific margin (ODP Sites 1095, 1101). Marine Geology, 2007, 242, 261-269.	2.1	66
94	San Andreas Fault Zone Mineralogy, Geochemistry, and Physical Properties from SAFOD Cuttings and Core. Scientific Drilling, 2007, , .	0.6	6
95	Electron Microscopy of Clay Minerals in Mudrocks from the San Andreas Fault Observatory at Depth (SAFOD). Scientific Drilling, 2007, , .	0.6	0
96	Origin and significance of clay-coated fractures in mudrock fragments of the SAFOD borehole (Parkfield, California). Geophysical Research Letters, 2006, 33, .	4.0	63
97	Late Miocene to Pleistocene paleoceanographic records from the Feni and Gardar Drifts: Pliocene reduction in abyssal flow. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236, 290-301.	2.3	22
98	Syn-folding remagnetization of Cambro-Ordovician carbonates from the Pennsylvania Salient post-dates oroclinal rotation. Tectonophysics, 2006, 422, 41-54.	2.2	17
99	Primary curvature in the Mid-Continent Rift: Paleomagnetism of the Portage Lake Volcanics (northern) Tj ETQq1 I	L 0.78431 2.2	4 rgBT /Ov <mark>e</mark> r
100	Mineralogical characterization of protolith and fault rocks from the SAFOD Main Hole. Geophysical Research Letters, 2006, 33, .	4.0	93
101	Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses. Geology, 2006, 34, 837.	4.4	78
102	Fluid focusing and back-reactions in the uplifted shoulder of the Rhine rift system: a clay mineral study along the Schauenburg Fault zone (Heidelberg, Germany). International Journal of Earth Sciences, 2006, 95, 19-33.	1.8	14
103	Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones. Clays and Clay Minerals, 2006, 54, 500-514.	1.3	196
104	Restored transect across the exhumed Grenville orogen of Laurentia and Amazonia, with implications for crustal architecture. Geology, 2006, 34, 669.	4.4	97
105	The Global Change Curriculum and Minor at the University of Michigan. Journal of Geoscience Education, 2006, 54, 249-254.	1.4	3
106	Late Mesoproterozoic Deformation of SW Amazonia (Rondônia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia. Journal of Geology, 2005, 113, 309-323.	1.4	48
107	Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, 2005, 27, 1563-1576.	2.3	133
108	Two stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone. Precambrian Research, 2005, 137, 35-59.	2.7	47

#	Article	IF	CITATIONS
109	Crystal fractionation in the friction melts of seismic faults (Alpine Fault, New Zealand). Tectonophysics, 2005, 402, 111-124.	2.2	18
110	Exhumation of a collisional orogen: A perspective from the North American Grenville Province. , 2004, , 391-410.		12
111	Neogene history of the Deep Western Boundary Current at Rekohu sediment drift, Southwest Pacific (ODP Site 1124). Marine Geology, 2004, 205, 185-206.	2.1	26
112	Significance of the Nova Brasilândia metasedimentary belt in western Brazil: Redefining the Mesoproterozoic boundary of the Amazon craton. Tectonics, 2004, 23, n/a-n/a.	2.8	57
113	Phyllosilicate mineral assemblages of the SAFOD Pilot Hole and comparison with an exhumed segment of the San Andreas Fault System. Geophysical Research Letters, 2004, 31, .	4.0	18
114	Magnetic fabrics and strain in pencil structures of the Knobs Formation, Valley and Ridge Province, US Appalachians. Journal of Structural Geology, 2003, 25, 1349-1358.	2.3	48
115	Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. Journal of Geophysical Research, 2003, 108, .	3.3	52
116	Frictional melt pulses during a â^1⁄41.1 Ma earthquake along the Alpine Fault, New Zealand. Earth and Planetary Science Letters, 2003, 209, 39-52.	4.4	28
117	Rob Van der Voo—an appreciation. Tectonophysics, 2003, 362, xi-xii.	2.2	0
118	Influence of mechanical compaction and chemical diagenesis on the microfabric and fluid flow properties of Gulf of Mexico mudstones. Journal of Geochemical Exploration, 2003, 78-79, 449-451.	3.2	23
119	FROM THE EDITORS OF GEOLOGY. Geology, 2003, 31, 95.	4.4	0
120	The40Ar-39Ar laser analysis of K-feldspar: Constraints on the uplift history of the Grenville Province in Ontario and New York. Journal of Geophysical Research, 2002, 107, ECV 12-1-ECV 12-11.	3.3	14
121	Phyllosilicate fabric characterization by Low-Temperature Anisotropy of Magnetic Susceptibility (LT-AMS). Geophysical Research Letters, 2002, 29, 68-1-68-4.	4.0	52
122	Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth and Planetary Science Letters, 2002, 199, 185-200.	4.4	165
123	Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift. Earth and Planetary Science Letters, 2002, 201, 127-142.	4.4	27
124	Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 2002, 350, 283-298.	2.2	154
125	Early History of the Carthageâ€Colton Shear Zone, Grenville Province, Northwest Adirondacks, New York (U.S.A.). Journal of Geology, 2001, 109, 479-492.	1.4	45
126	40Ar-39Ar geochronometry of pseudotachylytes by vacuum encapsulation: North Cascade Mountains, Washington, USA. Geology, 2001, 29, 51.	4.4	37

#	Article	IF	CITATIONS
127	The dating of shallow faults in the Earth's crust. Nature, 2001, 412, 172-175.	27.8	224
128	Static recrystallization and preferred orientation of phyllosilicates: Michigamme Formation, northern Michigan, USA. Journal of Structural Geology, 2001, 23, 887-893.	2.3	20
129	Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation. Geological Society Special Publication, 2001, 186, 103-112.	1.3	15
130	Oroclinal bending and evidence against the Pangea megashear: The Cantabria-Asturias arc (northern) Tj ETQq0 (0 0 rgBT /0	Overlock 10 Tr 145
131	West African proximity of the Avalon terrane in the latest Precambrian. Bulletin of the Geological Society of America, 2001, 113, 1161-1170.	3.3	59
132	The relationship of phyllosilicate orientation, X-ray diffraction intensity ratios, and c/b fissility ratios in metasedimentary rocks of the Helvetic zone of the Swiss Alps and the Caledonides of J¤ntland, central western Sweden. Journal of Structural Geology, 2000, 22, 245-258.	2.3	16
133	The formation of an orocline by multiphase deformation: a paleomagnetic investigation of the Cantabria–Asturias Arc (northern Spain). Journal of Structural Geology, 2000, 22, 735-756.	2.3	114
134	Late Proterozoic (ca. 930 Ma) extension in eastern Laurentia. Bulletin of the Geological Society of America, 2000, 112, 1522-1530.	3.3	33
135	Analysis of Variscan dynamics; early bending of the Cantabria–Asturias Arc, northern Spain. Earth and Planetary Science Letters, 2000, 181, 203-216.	4.4	45
136	Preferred Orientation of Phyllosilicates in Gulf Coast Mudstones and Relation to the Smectite-Illite Transition. Clays and Clay Minerals, 1999, 47, 495-504.	1.3	100
137	Comparison of garnet-biotite, calcite-graphite, and calcite-dolomite thermometry in the Grenville Orogen; Ontario, Canada. Contributions To Mineralogy and Petrology, 1999, 134, 217-231.	3.1	27
138	Clay gouge. Journal of Structural Geology, 1999, 21, 1039-1048.	2.3	241
139	The tectonics of continental interiors. Tectonophysics, 1999, 305, vii-x.	2.2	7
140	Sevier–Laramide deformation of the continental interior from calcite twinning analysis, west-central North America. Tectonophysics, 1999, 305, 275-286.	2.2	52
141	Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics, 1999, 307, 1-14.	2.2	253
142	Structural sequences and styles of subsidence in the Michigan basin. Bulletin of the Geological Society of America, 1999, 111, 974-991.	3.3	51
143	Relative timing of calcite twinning strain and fold-thrust belt development; Hudson Valley fold-thrust belt, New York, U.S.A Journal of Structural Geology, 1998, 20, 21-31.	2.3	25
144	Paleomagnetic constraints on Siluro-Devonian Laurentian margin tectonics from northern Appalachian volcanics. Tectonophysics, 1998, 285, 1-19.	2.2	6

#	Article	IF	CITATIONS
145	Contradictions of slate formation resolved?. Nature, 1998, 392, 348-348.	27.8	24
146	Use of grain size and magnetic fabric analyses to distinguish among depositional environments. Paleoceanography, 1998, 13, 491-501.	3.0	46
147	Ordovician paleogeography and the evolution of the lapetus ocean. Geology, 1997, 25, 159.	4.4	154
148	Suturing and extensional reactivation in the Grenville orogen, Canada. Geology, 1997, 25, 507.	4.4	29
149	Nature of the Elzevir–Mazinaw domain boundary, Grenville Orogen, Ontario. Canadian Journal of Earth Sciences, 1997, 34, 976-991.	1.3	9
150	Paleostress in Cratonic North America: Implications for Deformation of Continental Interiors. Science, 1997, 277, 794-796.	12.6	107
151	Late orogenic, plastic to brittle extension along the Robertson Lake shear zone: implications for the style of deep-crustal extension in the Grenville orogen, Canada. Precambrian Research, 1996, 77, 41-57.	2.7	18
152	Listric normal faulting during postorogenic extension revealed by40Ar/39Ar thermochronology near the Robertson Lake shear zone, Grenville orogen, Canada. Tectonics, 1996, 15, 387-402.	2.8	41
153	Near-Laurentian paleogeography of the Lawrence Head volcanics of central Newfoundland, northern Appalachians. Tectonophysics, 1996, 263, 107-121.	2.2	5
154	Evolution of deep-crustal normal faults: constraints from thermobarometry in the Grenville Orogen, Ontario, Canada. Tectonophysics, 1996, 265, 83-100.	2.2	14
155	Contrasting roles of detrital and authigenic phyllosilicates during slaty cleavage development. Journal of Structural Geology, 1996, 18, 615-623.	2.3	23
156	Basement and basins of eastern North America: A research conference summary. , 1996, , .		0
157	Some remarks on rheology and fluid migration in the Paleozoic eastern Midcontinent of North America from regional calcite twinning patterns. , 1996, , .		1
158	Constraints on the duration of tectonic processes: Protracted extension and deep-crustal rotation in the Grenville orogen. Geology, 1995, 23, 361.	4.4	37
159	Reorientation mechanisms of phyllosilicates in the mudstone-to-slate transition at Lehigh Gap, Pennsylvania. Journal of Structural Geology, 1995, 17, 345-356.	2.3	38
160	Calcite textures, microstructures and rheological properties of marble mylonites in the Bancroft shear zone, Ontario, Canada. Journal of Structural Geology, 1995, 17, 677-688.	2.3	59
161	Plastic behavior of magnetite and high strains obtained from magnetic fabrics in the Parry Sound shear zone, Ontario Grenville Province. Journal of Structural Geology, 1995, 17, 265-278.	2.3	59
162	High-resolution X-ray texture goniometry: Reply. Journal of Structural Geology, 1995, 17, 925-926.	2.3	4

#	Article	IF	CITATIONS
163	D. H. Tarling & F. Hrouda, 1993. The Magnetic Anisotropy of Rocks. xi + 217 pp. London, Glasgow, New York, Tokyo, Melbourne, Madras: Chapman & Hall. Price £40.00 (hard covers). ISBN 0412 49880 4 Geological Magazine, 1995, 132, 454-454.	1.5	1
164	Paleomagnetism and magnetic fabrics from the Springdale and Wigwam Redbeds of Newfoundland and their implications for the Silurian paleolatitude controversy. Earth and Planetary Science Letters, 1995, 132, 141-155.	4.4	17
165	Paleomagnetism of the Pennington Mountain terrane: A near-Laurentian back arc basin in the Maine Appalachians. Journal of Geophysical Research, 1995, 100, 10003-10011.	3.3	14
166	TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: an example from Central Wales, U.K Journal of Structural Geology, 1994, 16, 1139-1157.	2.3	52
167	High-resolution X-ray texture goniometry. Journal of Structural Geology, 1994, 16, 1029-1032.	2.3	58
168	Comment On: â€~Early Silurian Palaeolatitude of the Springdale Group Redbeds of Central Newfoundland: A Palaeomagnetic Determination With A Remanence Anisotropy Test For Inclination Error' By J. P. Hodych and K. L. Buchan. Geophysical Journal International, 1994, 119, 1009-1013.	2.4	5
169	Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Physics of the Earth and Planetary Interiors, 1994, 82, 113-123.	1.9	140
170	Determining the significance of high-grade shear zones by using temperature-time paths, with examples from the Grenville orogen. Geology, 1994, 22, 743.	4.4	43
171	Stress regimes in the Lithosphere. Terry Engelder. Journal of Geology, 1994, 102, 491-491.	1.4	0
172	U-Pb geochronology of the Grenville Orogen of Ontario and New York: constraints on ancient crustal tectonics. Contributions To Mineralogy and Petrology, 1993, 114, 13-26.	3.1	158
173	The quantification of crystallographic preferred orientation using magnetic anisotropy. Journal of Structural Geology, 1993, 15, 113-116.	2.3	44
174	Avalonian proximity of the Ordovician Miramichi Terrane, northern New Brunswick, northern Appalachians: Paleomagnetic evidence for rifting and back-arc basin formation at the southern margin of lapetus. Tectonophysics, 1993, 227, 17-30.	2.2	22
175	Composite magnetic anisotropy fabrics: experiments, numerical models and implications for the quantification of rock fabrics. Tectonophysics, 1993, 220, 1-12.	2.2	123
176	Discordant Silurian paleolatitudes for central Newfoundland: New paleomagnetic evidence from the Springdale Group. Earth and Planetary Science Letters, 1993, 120, 1-12.	4.4	22
177	Early Silurian paleolatitude for central Newfoundland from paleomagnetism of the Wigwam Formation: Discussion. Canadian Journal of Earth Sciences, 1993, 30, 644-645.	1.3	10
178	Regional shortening fabrics in eastern North America: Farâ€field stress transmission from the Appalachianâ€Ouachita Orogenic Belt. Tectonics, 1993, 12, 257-264.	2.8	70
179	Paleomagnetism of the Ordovician Bluffer Pond Formation: Paleogeographic implications for the Munsungun terrane of northern Maine. Journal of Geophysical Research, 1993, 98, 7987-7996.	3.3	13
180	Magnetite dissolution and neocrystallization during cleavage formation: Paleomagnetic study of the Martinsburg Formation, Lehigh Gap, Pennsylvania. Journal of Geophysical Research, 1993, 98, 13799-13813.	3.3	24

#	Article	IF	CITATIONS
181	Paleogeography, accretionary history, and tectonic scenario: A working hypothesis for the Ordovician and Silurian evolution of the northern Appalachians. Special Paper of the Geological Society of America, 1993, , 27-40.	0.5	13
182	Thermobarometry, Geochronology and the Interpretation of P-T-t Data in the Britt Domain, Ontario Grenville Orogen, Canada. Journal of Petrology, 1992, 33, 1225-1259.	2.8	48
183	Relations between deformation and sediment-hosted copper mineralization: Evidence from the White Pine part of the Midcontinent rift system. Geology, 1992, 20, 427.	4.4	38
184	The Carthage-Colton Mylonite Zone (Adirondack Mountains, New York): The Site of a Cryptic Suture in the Grenville Orogen?. Journal of Geology, 1992, 100, 630-638.	1.4	48
185	Slaty cleavage development and magnetic anisotropy fabrics. Journal of Geophysical Research, 1991, 96, 9937-9946.	3.3	67
186	Paleomagnetism of the Moreton's Harbour Group, northeastern Newfoundland Appalachians: Evidence for an Early Ordovician Island Arc near the Laurentian Margin of lapetus. Journal of Geophysical Research, 1991, 96, 11689-11701.	3.3	21
187	Reply [to "Comment on â€~Tectonic history of the Lunksoos Composite Terrane in the Maine Appalaciansâ€â€™]. Tectonics, 1991, 10, 647-648.	2.8	0
188	Acadian and Alleghenian remagnetization of the Jim Pond Formation, central western Maine, northern Appalachians. Tectonophysics, 1991, 186, 279-291.	2.2	7
189	Synorogenic Collapse: A Perspective from the Middle Crust, the Proterozoic Grenville Orogen. Science, 1991, 254, 695-698.	12.6	54
190	Paleogeography of some vestiges of Iapetus: Paleomagnetism of the Ordovician Robert's Arm, Summerford, and Chanceport Groups, central Newfoundland. Bulletin of the Geological Society of America, 1991, 103, 1564-1575.	3.3	22
191	Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events. Geology, 1990, 18, 1115.	4.4	27
192	Early Paleozoic paleogeography and accretionary history of the Newfoundland Appalachians. Geology, 1990, 18, 898.	4.4	43
193	Synchroneity of folding and crosscutting cleavage in the Newfoundland Appalachians?. Journal of Structural Geology, 1990, 12, 1073-1076.	2.3	6
194	Marble mylonites of the Bancroft shear zone: Evidence for extension in the Canadian Grenville. Bulletin of the Geological Society of America, 1990, 102, 174-181.	3.3	52
195	Early history of the Michigan basin: Subsidence and Appalachian tectonics. Geology, 1990, 18, 1195.	4.4	46
196	Growth and retrograde zoning in garnets from high-grade, metapelites: Implications for pressure-temperature paths. Geology, 1990, 18, 839.	4.4	76
197	Triassic-Jurassic rifting. Continental breakup and the origin of the Atlantic ocean and passive margins. Tectonophysics, 1990, 175, 381.	2.2	0
198	Tectonic history of the Lunksoos Composite Terrane in the Maine Appalachians. Tectonics, 1990, 9, 719-734.	2.8	19

#	Article	IF	CITATIONS
199	Chlorite control of correlations between strain and anisotropy of magnetic susceptibility. Physics of the Earth and Planetary Interiors, 1990, 61, 315-323.	1.9	47
200	Remagnetizations and thrusting in the Idahoâ€Wyoming Overthrust Belt. Journal of Geophysical Research, 1990, 95, 4551-4559.	3.3	39
201	Paleomagnetism of the Lawrenceton Formation volcanic rocks, Silurian Botwood Group, Change Islands, Newfoundland. Canadian Journal of Earth Sciences, 1989, 26, 296-304.	1.3	17
202	Extension in the Central Metasedimentary Belt of the Ontario Grenville: Timing and tectonic significance. Geology, 1989, 17, 161.	4.4	51
203	Late Paleozoic deformation of the cratonic carbonate cover of eastern North America. Geology, 1989, 17, 416.	4.4	97
204	Kinematic analysis of an en échelon—continuous vein complex. Journal of Structural Geology, 1988, 10, 445-452.	2.3	34
205	Analytical Electron Microscopy and the Problem of Potassium Diffusion1. Clays and Clay Minerals, 1988, 36, 498-504.	1.3	63
206	Characteristics and Evolution of the Central Mobile Belt, Canadian Appalachians. Journal of Geology, 1988, 96, 535-547.	1.4	38
207	Fossil evidence for fault-derived stratigraphic repetition in the northeastern Newfoundland Appalachians. Canadian Journal of Earth Sciences, 1987, 24, 2337-2350.	1.3	18
208	Timing and spatial distribution of deformation in the Newfoundland Appalachians: a "multi-stage collision―history. Tectonophysics, 1987, 135, 15-24.	2.2	15
209	Grainâ€scale deformation and the fold test ―evaluation of synâ€folding remagnetization. Geophysical Research Letters, 1987, 14, 155-157.	4.0	48
210	Note on analysis of quartz grain dimensions in foliated greywackes. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1987, 76, 851-855.	1.3	0
211	Variation in fold geometry in the Yuso basin, northern Spain: implications for the deformation regime. Journal of Structural Geology, 1986, 8, 879-886.	2.3	22
212	Geology of eastern New World Island, Newfoundland: An accretionary terrane in the northeastern Appalachians. Bulletin of the Geological Society of America, 1986, 97, 932.	3.3	32
213	Metamorphic fluids and transtension in the Cantabrian Mountains of northern Spain: an application of the conodont colour alteration index. Geological Magazine, 1986, 123, 673-681.	1.5	45
214	Mica beards in three slates: Morphology, formation and bearing on the strain history. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1984, 73, 1037-1053.	1.3	3
215	Chlorite-mica aggregates: morphology, orientation, development and bearing on cleavage formation in very-low-grade rocks. Journal of Structural Geology, 1984, 6, 399-407.	2.3	53
216	An unusual â€~crack-seal' vein geometry. Journal of Structural Geology, 1984, 6, 593-597.	2.3	15

#	Article	IF	CITATIONS
217	Structural interpretation of the eastern Notre Dame Bay area, Newfoundland: regional post-Middle Silurian thrusting and asymmetrical folding: Reply. Canadian Journal of Earth Sciences, 1983, 20, 1353-1354.	1.3	2
218	Sedimentology of Upper Ordovician – Silurian sequences on New World Island, Newfoundland: separate fault-controlled basins?: Discussion. Canadian Journal of Earth Sciences, 1983, 20, 1757-1758.	1.3	4
219	Structural interpretation of the eastern Notre Dame Bay area, Newfoundland: regional post-Middle Silurian thrusting and asymmetrical folding. Canadian Journal of Earth Sciences, 1982, 19, 2325-2341.	1.3	59
220	San Andreas Fault Zone Mineralogy, Geochemistry, and Physical Properties from SAFOD Cuttings and Core. Scientific Drilling, 0, SpecialIssue, 64-67.	0.6	3
221	Electron Microscopy of Clay Minerals in Mudrocks from the San Andreas Fault Observatory at Depth (SAFOD). Scientific Drilling, 0, SpecialIssue, 68-70.	0.6	1