Ciska G F Veen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1310608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Where, when and how plant–soil feedback matters in a changing world. Functional Ecology, 2016, 30, 1109-1121.	1.7	378
2	Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends in Ecology and Evolution, 2018, 33, 129-142.	4.2	249
3	Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany, 2016, 135, 18-36.	0.8	193
4	Litter quality and environmental controls of homeâ€field advantage effects on litter decomposition. Oikos, 2015, 124, 187-195.	1.2	178
5	A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 2017, 1, 1836-1845.	3.4	172
6	Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology, 2010, 91, 828-835.	1.5	104
7	Why are plant–soil feedbacks so unpredictable, and what to do about it?. Functional Ecology, 2019, 33, 118-128.	1.7	91
8	An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 32-44.	1.1	89
9	The Role of Plant Litter in Driving Plant-Soil Feedbacks. Frontiers in Environmental Science, 2019, 7, .	1.5	79
10	Environmental factors and traits that drive plant litter decomposition do not determine homeâ€field advantage effects. Functional Ecology, 2015, 29, 981-991.	1.7	75
11	Ecological correlates of seed survival after ingestion by Fallow Deer. Functional Ecology, 2005, 19, 284-290.	1.7	66
12	Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME Journal, 2021, 15, 618-621.	4.4	61
13	Influence of grazing and fire frequency on smallâ€scale plant community structure and resource variability in native tallgrass prairie. Oikos, 2008, 117, 859-866.	1.2	58
14	Plant–soil feedbacks and the coexistence of competing plants. Theoretical Ecology, 2013, 6, 99-113.	0.4	55
15	Homeâ€field advantage of litter decomposition: from the phyllosphere to the soil. New Phytologist, 2021, 231, 1353-1358.	3.5	55
16	Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere, 2017, 8, e01719.	1.0	52
17	The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences. Frontiers in Earth Science, 2017, 5, .	0.8	50
18	Grazingâ€induced changes in plant–soil feedback alter plant biomass allocation. Oikos, 2014, 123, 800-806.	1.2	47

CISKA G F VEEN

#	Article	IF	CITATIONS
19	Effects of root decomposition on plant–soil feedback of early―and midâ€successional plant species. New Phytologist, 2016, 212, 220-231.	3.5	47
20	Relationships between fungal community composition in decomposing leaf litter and homeâ€field advantage effects. Functional Ecology, 2019, 33, 1524-1535.	1.7	47
21	Microbial storage and its implications for soil ecology. ISME Journal, 2022, 16, 617-629.	4.4	47
22	Variation in homeâ€field advantage and ability in leaf litter decomposition across successional gradients. Functional Ecology, 2018, 32, 1563-1574.	1.7	45
23	Peeking into the black box: a traitâ€based approach to predicting plant–soil feedback. New Phytologist, 2015, 206, 1-4.	3.5	44
24	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	4.2	43
25	Nonlinear responses of soil nematode community composition to increasing aridity. Global Ecology and Biogeography, 2020, 29, 117-126.	2.7	36
26	Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos, 2017, 126, 1586-1599.	1.2	32
27	Relationship between home-field advantage of litter decomposition and priming of soil organic matter. Soil Biology and Biochemistry, 2018, 126, 49-56.	4.2	30
28	Soil microbial biomass increases along elevational gradients in the tropics and subtropics but not elsewhere. Global Ecology and Biogeography, 2020, 29, 345-354.	2.7	30
29	Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra. Oikos, 2015, 124, 772-783.	1.2	28
30	Biodiversityâ€ecosystem functioning relationships in a longâ€ŧerm nonâ€weeded field experiment. Ecology, 2018, 99, 1836-1846.	1.5	24
31	High Grazing Pressure of Geese Threatens Conservation and Restoration of Reed Belts. Frontiers in Plant Science, 2018, 9, 1649.	1.7	22
32	The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level. PLoS ONE, 2020, 15, e0237256.	1.1	22
33	Patch choice of avian herbivores along a migration trajectory–From Temperate to Arctic. Basic and Applied Ecology, 2007, 8, 354-363.	1.2	20
34	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	20
35	Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient. Freshwater Biology, 2013, 58, 1794-1803.	1.2	19
36	Herbivores Enforce Sharp Boundaries Between Terrestrial and Aquatic Ecosystems. Ecosystems, 2014, 17, 1426-1438.	1.6	19

CISKA G F VEEN

#	Article	IF	CITATIONS
37	Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition. Oecologia, 2012, 168, 511-518.	0.9	17
38	Rhizosphere and litter feedbacks to rangeâ€expanding plant species and related natives. Journal of Ecology, 2020, 108, 353-365.	1.9	16
39	Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species. Aquatic Botany, 2017, 136, 82-94.	0.8	15
40	Legacy effects of altered flooding regimes on decomposition in a boreal floodplain. Plant and Soil, 2017, 421, 57-66.	1.8	15
41	Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia, 2018, 67, 57-64.	0.5	14
42	Steering the soil microbiome by repeated litter addition. Journal of Ecology, 2021, 109, 2499-2513.	1.9	14
43	Soil functional responses to drought under rangeâ€expanding and native plant communities. Functional Ecology, 2019, 33, 2402-2416.	1.7	13
44	Belowground community turnover accelerates the decomposition of standing dead wood. Ecology, 2021, 102, e03484.	1.5	13
45	Above-Ground and Below-Ground Plant Responses to Fertilization in Two Subarctic Ecosystems. Arctic, Antarctic, and Alpine Research, 2015, 47, 693-702.	0.4	11
46	Optimizing stand density for climate-smart forestry: A way forward towards resilient forests with enhanced carbon storage under extreme climate events. Soil Biology and Biochemistry, 2021, 162, 108396.	4.2	11
47	Soil microbial diversity and community composition during conversion from conventional to organic agriculture. Molecular Ecology, 2022, 31, 4017-4030.	2.0	11
48	Herbivore phenology can predict response to changes in plant quality by livestock grazing. Oikos, 2020, 129, 811-819.	1.2	7
49	Negative effects of litter richness on root decomposition in the presence of detritivores. Functional Ecology, 2018, 32, 1079-1090.	1.7	6
50	Belowground Consequences of Intracontinental Range-Expanding Plants and Related Natives in Novel Environments. Frontiers in Microbiology, 2019, 10, 505.	1.5	5
51	The role of soil-borne fungi in driving the coexistence of <i>Pinus massoniana</i> and <i>Lithocarpus glaber</i> in a subtropical forest via plant–soil feedback. Journal of Plant Ecology, 2021, 14, 1189-1203.	1.2	5
52	Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. Ecological Monographs, 2022, 92, .	2.4	5
53	Interactive effects of soil-dwelling ants, ant mounds and simulated grazing on local plant community composition. Basic and Applied Ecology, 2011, 12, 703-703.	1.2	4