Emanuele Amadio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1310403/publications.pdf

Version: 2024-02-01

29	716	16	27
papers	citations	h-index	g-index
30	30	30	960
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spirulina for Skin Care: A Bright Blue Future. Cosmetics, 2021, 8, 7.	1.5	40
2	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
3	Precursor-Dependent Photocatalytic Activity of Carbon Dots. Molecules, 2020, 25, 101.	1.7	22
4	Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. Journal of CO2 Utilization, 2020, 41, 101259.	3.3	41
5	Organic Polyradicals as Redox Mediators: Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45968-45975.	4.0	3
6	Supercritical CO2 extraction of natural antibacterials from low value weeds and agro-waste. Journal of CO2 Utilization, 2020, 40, 101198.	3.3	12
7	Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green Chemistry, 2020, 22, 1145-1149.	4.6	38
8	Reaction of Glycerol with Trimethyl Orthoformate: Towards the Synthesis of New Glycerol Derivatives. Catalysts, 2019, 9, 534.	1.6	2
9	High-Temperature Batch and Continuous-Flow Transesterification of Alkyl and Enol Esters with Glycerol and Its Acetal Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 3964-3973.	3.2	25
10	Efficient Vanadiumâ€Catalyzed Aerobic Câ^'C Bond Oxidative Cleavage of Vicinal Diols. Advanced Synthesis and Catalysis, 2018, 360, 3286-3296.	2.1	38
11	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Carbon Dots for Catalysis. ACS Applied Materials & Design of Carbon Dots for Carbon Dots for Catalysis. ACS Applied Materials & Design of Carbon Dots for Carbon Dots	4.0	79
12	Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake. ACS Medicinal Chemistry Letters, 2018, 9, 832-837.	1.3	95
13	Biphase hydroformylation catalyzed by rhodium in combination with a water-soluble pyridyl-triazole ligand. Inorganica Chimica Acta, 2017, 455, 613-617.	1.2	10
14	A pyridyl-triazole ligand for ruthenium and iridium catalyzed CC and CO hydrogenations in water/organic solvent biphasic systems. Applied Catalysis A: General, 2015, 503, 20-25.	2.2	16
15	Vanadium catalyzed aerobic carbon–carbon cleavage. Coordination Chemistry Reviews, 2015, 301-302, 147-162.	9.5	63
16	Palladium catalyzed oxidative carbonylation of alcohols: effects of diphosphine ligands. Catalysis Science and Technology, 2015, 5, 2856-2864.	2.1	12
17	Mechanistic studies on the selective oxidative carbonylation of MeOHÂto dimethyl oxalate catalyzed by [Pd(COOMe)n(TsO)2â^'n(PPh3)2] (nÂ=Â0, 1, 2) using p-benzoquinone as a stoichiometric oxidant. Journal of Organometallic Chemistry, 2014, 750, 74-79.	0.8	4
18	Efficient oxidative carbonylation of PrOH to oxalate catalyzed by Pd(II)–PPh3 complexes using benzoquinone as a stoichiometric oxidant. Journal of Organometallic Chemistry, 2014, 767, 72-77.	0.8	3

#	Article	IF	CITATIONS
19	A water-soluble pyridyl-triazole ligand for aqueous phase palladium catalyzed Suzuki–Miyaura coupling. RSC Advances, 2013, 3, 21636.	1.7	19
20	An NMR study on the mechanism of ethene hydromethoxycarbonylation catalyzed by cationic Pd(II)–PPh3 complexes. Journal of Organometallic Chemistry, 2013, 745-746, 115-119.	0.8	9
21	Synthesis and characterization of novel gold(III) complexes with polydentate N-donor ligands based on the pyridine and triazole heterocycles. Inorganic Chemistry Communication, 2013, 33, 82-85.	1.8	6
22	A new palladium(II)–allyl complex containing a thioether-triazole ligand as active catalyst in Suzuki–Miyaura reaction. Use of tetraalkylammonium salts as promoters: Influence of the salt anion and cation on the catalytic activity. Inorganica Chimica Acta, 2013, 405, 188-195.	1.2	23
23	Synthesis, characterization and low temperature self assembling of (Î-3-allyl)palladium complexes with 2-pyridyl-1,2,3-triazole bidentate ligands. Study ofÂtheÂcatalytic activity in Suzuki–Miyaura reaction. Journal of Organometallic Chemistry, 2012, 716, 193-200.	0.8	24
24	Synthesis, crystal structure, solution behavior and catalytic activity of a palladium(II)-allyl complex containing a 2-pyridyl-1,2,3-triazole bidentate ligand. Inorganica Chimica Acta, 2011, 370, 388-393.	1.2	30
25	Catalytic Properties of [Pd(COOMe) _{<i>n</i>} X _{2â^'<i>n</i>} (PPh ₃) ₂] (<i>n</i> = 0,) T	j ET.Q q1 :	l 0.784314 n
26	Terpolymerisation of 1-olefin and ethene with CO catalysed by the [PdCl2(dppp)] complex in methanol as a solvent [dppp=1,3-bis(diphenylphosphino)propane]. Journal of Molecular Catalysis A, 2009, 299, 5-11.	4.8	7
27	Oxidative carbonylation of phenols catalyzed by homogeneous and heterogeneous Pd precursors. Journal of Molecular Catalysis A, 2009, 298, 23-30.	4.8	25
28	New carboalkoxybis(triphenylphosphine)palladium(II) cationic complexes: Synthesis, characterization, reactivity and role in the catalytic hydrocarboalkoxylation of ethene. X-ray structure of trans-[Pd(COOMe)(TsO)(PPh3)2]·2CHCl3. Journal of Molecular Catalysis A, 2009, 298, 103-110.	4.8	11
29	CO–ethene copolymerisation catalysed by [PdCl2(PPh3)2]/PPh3/HCl in MeOH. Journal of Molecular Catalysis A, 2007, 278, 251-257.	4.8	8