Binbin Nian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1310160/publications.pdf

Version: 2024-02-01

147566 205818 3,630 152 31 48 h-index citations g-index papers 154 154 154 3139 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chemistry, 2018, 268, 334-341.	4.2	216
2	Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 2018, 246, 137-149.	4.2	121
3	The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 2008, 15, 402-407.	3.8	120
4	Recent advances on proteinâ€based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1934-1968.	5.9	105
5	A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology, 2015, 177, 51-57.	4.8	101
6	Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process. Food Chemistry, 2017, 237, 98-105.	4.2	83
7	Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresource Technology, 2015, 177, 134-140.	4.8	75
8	Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo. Food Chemistry, 2019, 280, 34-44.	4.2	64
9	Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chemistry, 2019, 292, 134-142.	4.2	64
10	Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chemistry, 2022, 368, 130848.	4.2	62
11	Photodegradation of Aflatoxin B1 in peanut oil. European Food Research and Technology, 2011, 232, 843-849.	1.6	55
12	Sinapine reduces non-alcoholic fatty liver disease in mice by modulating the composition of the gut microbiota. Food and Function, 2019, 10, 3637-3649.	2.1	55
13	Triglyceride Structure Modulates Gastrointestinal Digestion Fates of Lipids: A Comparative Study between Typical Edible Oils and Triglycerides Using Fully Designed in Vitro Digestion Model. Journal of Agricultural and Food Chemistry, 2018, 66, 6227-6238.	2.4	54
14	Multiple Hydrogen-Bonding Interactions Enhance the Solubility of Starch in Natural Deep Eutectic Solvents: Molecule and Macroscopic Scale Insights. Journal of Agricultural and Food Chemistry, 2019, 67, 12366-12373.	2.4	50
15	Influence of lipid composition, crystallization behavior and microstructure on hardness of palm oil-based margarines. European Food Research and Technology, 2010, 230, 759-767.	1.6	48
16	Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application. Food Chemistry, 2016, 204, 194-200.	4.2	48
17	Adsorption of Sulfate Ions from Aqueous Solution by Surfactant-Modified Palygorskite. Journal of Chemical & Ch	1.0	47
18	Physical Properties, Microstructure, Intermolecular Forces, and Oxidation Stability of Soybean Oil Oleogels Structured by Different Cellulose Ethers. European Journal of Lipid Science and Technology, 2018, 120, 1700287.	1.0	46

#	Article	IF	CITATIONS
19	Influence of indigenous minor components on fat crystal network of fully hydrogenated palm kernel oil and fully hydrogenated coconut oil. Food Chemistry, 2018, 255, 49-57.	4.2	43
20	Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 208-215.	2.4	42
21	Lipid composition modulates the intestine digestion rate and serum lipid status of different edible oils: a combination of <i>in vitro</i> and <i>in vivo</i> studies. Food and Function, 2019, 10, 1490-1503.	2.1	42
22	Composition and antioxidant activity of polysaccharides from jujuba by classical and ultrasound extraction. International Journal of Biological Macromolecules, 2014, 63, 150-153.	3.6	41
23	LC–MS and UPLC–Quadrupole Time-of-Flight MS for Identification of Photodegradation Products of Aflatoxin B1. Chromatographia, 2010, 71, 107-112.	0.7	39
24	Antioxidant Activity of Seleniumâ€Enriched Peptides from the Protein Hydrolysate of <i>Cardamine violifolia</i> . Journal of Food Science, 2019, 84, 3504-3511.	1.5	39
25	Inactivation of Lipase and Lipoxygenase of Wheat Germ with Temperature-Controlled Short Wave Infrared Radiation and Its Effect on Storage Stability and Quality of Wheat Germ Oil. PLoS ONE, 2016, 11, e0167330.	1.1	39
26	A Quick Method for Determining Total Polar Compounds of Frying Oils Using Electric Conductivity. Food Analytical Methods, 2016, 9, 1444-1450.	1.3	38
27	Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends in Food Science and Technology, 2021, 113, 255-276.	7.8	38
28	Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International, 2018, 111, 281-290.	2.9	37
29	How <i>Candida antarctica</i> lipase B can be activated in natural deep eutectic solvents: experimental and molecular dynamics studies. Journal of Chemical Technology and Biotechnology, 2020, 95, 86-93.	1.6	37
30	Crystal network structure and stability of beeswax-based oleogels with different polyunsaturated fatty acid oils. Food Chemistry, 2022, 381, 131745.	4.2	37
31	Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS. Food Chemistry, 2017, 221, 1434-1441.	4.2	35
32	Characterization of Peanut Oil Bodies Integral Proteins, Lipids, and Their Associated Phytochemicals. Journal of Food Science, 2018, 83, 93-100.	1.5	35
33	Melting and Solidification Properties of Palm Kernel Oil, Tallow, and Palm Olein Blends in the Preparation of Shortening. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 23-28.	0.8	33
34	Adsorption Isotherms for Bleaching Soybean Oil with Activated Attapulgite. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 979-984.	0.8	32
35	Blooming in Cocoa Butter Substitutes Based Compound Chocolate: Investigations on Composition, Morphology and Melting Behavior. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1137-1143.	0.8	32
36	Concentration of Omega-3 Polyunsaturated Fatty Acids from Oil of <i>Schizochytrium limacinum</i> by Molecular Distillation: Optimization of Technological Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 3918-3925.	1.8	30

#	Article	IF	Citations
37	Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids in Health and Disease, 2017, 16, 218.	1.2	30
38	Soft \hat{l}^{e} -carrageenan microgels stabilized pickering emulsion gels: Compact interfacial layer construction and particle-dominated emulsion gelation. Journal of Colloid and Interface Science, 2021, 602, 822-833.	5.0	30
39	Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 5237-5246.	2.4	29
40	Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization. Food Chemistry, 2021, 365, 130497.	4.2	29
41	Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 964-998.	5.9	29
42	Comparison of different polar compounds-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Lipids in Health and Disease, 2016, 15, 30.	1.2	28
43	Activation and stabilization of Candida antarctica lipase B in choline chloride-glycerol-water binary system via tailoring the hydrogen-bonding interaction. International Journal of Biological Macromolecules, 2019, 136, 1086-1095.	3.6	28
44	Effect of Attapulgite Pore Size Distribution on Soybean Oil Bleaching. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 687-692.	0.8	27
45	Non-triglyceride components modulate the fat crystal network of palm kernel oil and coconut oil. Food Research International, 2018, 105, 423-431.	2.9	27
46	Preparation of specialty fats from beef tallow and canola oil by chemical interesterification: physico-chemical properties and bread applications of the products. European Food Research and Technology, 2010, 230, 457-466.	1.6	26
47	Development and Validation of a QuEChERS-LC-MS/MS Method for the Analysis of Phenolic Compounds in Rapeseed Oil. Journal of Agricultural and Food Chemistry, 2019, 67, 4105-4112.	2.4	26
48	Correlating emulsion properties to microencapsulation efficacy and nutrients retention in mixed proteins system. Food Research International, 2019, 115, 44-53.	2.9	25
49	Comparative analysis of graded blends of palm kernel oil, palm kernel stearin and palm stearin. Food Chemistry, 2019, 286, 636-643.	4.2	24
50	Prebiotic carbohydrates: Effect on physicochemical stability and solubility of algal oil nanoparticles. Carbohydrate Polymers, 2020, 228, 115372.	5.1	24
51	Effects of partial hydrolysis on the structural, functional and antioxidant properties of oat protein isolate. Food and Function, 2020, 11, 3144-3155.	2.1	24
52	Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chemistry, 2022, 380, 131838.	4.2	24
53	Reduction of Graininess Formation in Beef Tallowâ€Based Plastic Fats by Chemical Interesterification of Beef Tallow and Canola Oil. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1435-1442.	0.8	23
54	Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC–MS/MS. Food Chemistry, 2017, 234, 439-444.	4.2	23

#	Article	IF	Citations
55	Lipid Profiling and Microstructure Characteristics of Goat Milk Fat from Different Stages of Lactation. Journal of Agricultural and Food Chemistry, 2020, 68, 7204-7213.	2.4	23
56	Volatile components of deep-fried soybean oil as indicator indices of lipid oxidation and quality degradation. European Food Research and Technology, 2020, 246, 1183-1192.	1.6	23
57	Development of low-oil emulsion gel by solidifying oil droplets: Roles of internal beeswax concentration. Food Chemistry, 2021, 345, 128811.	4.2	23
58	Ultrasound-mediated interfacial protein adsorption and fat crystallization in cholesterol-reduced lard emulsion. Ultrasonics Sonochemistry, 2019, 58, 104641.	3.8	22
59	Degradation of aflatoxin B1 in aqueous medium through UV irradiation. European Food Research and Technology, 2011, 233, 1007-1012.	1.6	21
60	Characterization of cocoa butter substitutes, milk fat and cocoa butter mixtures. European Journal of Lipid Science and Technology, 2011, 113, 1145-1151.	1.0	21
61	Combination of Gas Chromatography-Mass Spectrometry and Electron Spin Resonance Spectroscopy for Analysis of Oxidative Stability in Soybean Oil During Deep-Frying Process. Food Analytical Methods, 2018, 11, 1485-1492.	1.3	21
62	Using Shortâ€Wave Infrared Radiation to Improve Aqueous Enzymatic Extraction of Peanut Oil: Evaluation of Peanut Cotyledon Microstructure and Oil Quality. European Journal of Lipid Science and Technology, 2018, 120, 1700285.	1.0	21
63	Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. Journal of Agricultural and Food Chemistry, 2020, 68, 14728-14738.	2.4	21
64	Synergetic effects of water-soluble polysaccharides for intensifying performances of oleogels fabricated by oil-absorbing cryogels. Food Chemistry, 2022, 372, 131357.	4.2	21
65	Effects of wax concentration and carbon chain length on the structural modification of fat crystals. Food and Function, 2019, 10, 5413-5425.	2.1	20
66	Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Critical Reviews in Food Science and Nutrition, 2023, 63, 1406-1436.	5.4	20
67	Visualized phase behavior of binary blends of coconut oil and palm stearin. Food Chemistry, 2018, 266, 66-72.	4.2	19
68	Foodomics Revealed the Effects of Extract Methods on the Composition and Nutrition of Peanut Oil. Journal of Agricultural and Food Chemistry, 2020, 68, 1147-1156.	2.4	19
69	Enzymatic preparation ofL-α-glycerylphosphorylcholine in an aqueous medium. European Journal of Lipid Science and Technology, 2012, 114, 1254-1260.	1.0	18
70	Influence of total polar compounds on lipid metabolism, oxidative stress and cytotoxicity in HepG2 cells. Lipids in Health and Disease, 2019, 18, 37.	1.2	18
71	Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease?. Food Research International, 2020, 138, 109812.	2.9	18
72	Gelation behavior and crystal network of natural waxes and corresponding binary blends in highâ€oleic sunflower oil. Journal of Food Science, 2021, 86, 3987-4000.	1.5	18

#	Article	IF	Citations
73	Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chemistry, 2022, 382, 132252.	4.2	18
74	Kinetic Study on the Isothermal and Nonisothermal Crystallization of Monoglyceride Organogels. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	17
75	Induction of a viable but non-culturable state in Salmonella Typhimurium is correlated with free radicals generated by thermosonication. International Journal of Food Microbiology, 2018, 286, 90-97.	2.1	17
76	Lipaseâ€Catalyzed Synthesis of Human Milk Fat Substitutes from Palm Stearin in a Continuous Packed Bed Reactor. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1463-1472.	0.8	16
77	Quantitative determination of epoxy stearic acids derived from oxidized frying oil based on solid-phase extraction and gas chromatography. LWT - Food Science and Technology, 2018, 92, 250-257.	2.5	16
78	Understanding of the Role of Pretreatment Methods on Rapeseed Oil from the Perspective of Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 8847-8854.	2.4	16
79	Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chemistry, 2020, 328, 127147.	4.2	16
80	New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing. Critical Reviews in Food Science and Nutrition, 2023, 63, 1564-1586.	5.4	16
81	Purification of Soybean Phosphatidylcholine Using D113â€III Ion Exchange Macroporous Resin Packed Column Chromatography. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 183-188.	0.8	15
82	Characterization of palm kernel oil, palm stearin, and palm olein blends in isosolid diagrams. European Journal of Lipid Science and Technology, 2010, 112, 1041-1047.	1.0	15
83	Efficiency and safety evaluation of photodegradation of <scp>A</scp> flatoxin <scp>B</scp> ₁ on peanut surface. International Journal of Food Science and Technology, 2013, 48, 2474-2479.	1.3	15
84	Validation of a Simple Extraction Method for Oil Bodies Isolated from Peanuts. European Journal of Lipid Science and Technology, 2018, 120, 1700363.	1.0	15
85	Identification of α-Tocopherol and Its Oxidation Products by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 669-677.	2.4	15
86	Comparation of micro-viscosity of liquid oil in different colloidal fat crystal networks using molecular rotors. Food Chemistry, 2020, 317, 126382.	4.2	15
87	Molecular dynamics revealed the effect of epoxy group on triglyceride digestion. Food Chemistry, 2022, 373, 131285.	4.2	15
88	Study on combined heat pump drying with freezeâ€drying of Antarctic krill and its effects on the lipids. Journal of Food Process Engineering, 2017, 40, e12577.	1.5	14
89	Exploration of the natural waxes-tuned crystallization behavior, droplet shape and rheology properties of O/W emulsions. Journal of Colloid and Interface Science, 2021, 587, 417-428.	5.0	14
90	Enzymeâ€Catalyzed Synthesis of Monoacylglycerols Citrate: Kinetics and Thermodynamics. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1627-1632.	0.8	13

#	Article	IF	Citations
91	Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Research International, 2020, 132, 109117.	2.9	13
92	Effect of fat composition on texture and bloom of lauric compound chocolate. European Journal of Lipid Science and Technology, 2010, 112, 1270-1276.	1.0	12
93	Effect of flameless catalytic infrared treatment on rancidity and bioactive compounds in wheat germ oil. RSC Advances, 2016, 6, 37265-37273.	1.7	12
94	Molecular dynamics simulation for mechanism revelation of the safety and nutrition of lipids and derivatives in food: State of the art. Food Research International, 2021, 145, 110399.	2.9	12
95	A comparative study between freeze-dried and spray-dried goat milk on lipid profiling and digestibility. Food Chemistry, 2022, 387, 132844.	4.2	12
96	Extraction of policosanols from hydrolysed rice bran wax by highâ€intensity ultrasound. International Journal of Food Science and Technology, 2008, 43, 763-769.	1.3	11
97	Specialty Fats from Beef Tallow and Canola Oil: Establishment of Reaction Conditions, Characterization of Products, and Evaluation of Crystal Stability. Food Biophysics, 2011, 6, 115-126.	1.4	11
98	Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures. Food Chemistry, 2019, 288, 108-116.	4.2	11
99	Effects of antioxidants, proteins, and their combination on emulsion oxidation. Critical Reviews in Food Science and Nutrition, 2022, 62, 8137-8160.	5.4	11
100	Ultrasound-modified interfacial properties and crystallization behavior of aerated emulsions fabricated with pH-shifting treated pea protein. Food Chemistry, 2022, 367, 130536.	4.2	11
101	Optimisation of sunflower oil deodorising: balance between oil stability and other quality attributes. International Journal of Food Science and Technology, 2013, 48, 1822-1827.	1.3	10
102	Degradation of Edible Oil During Deepâ€Frying Process by Electron Spin Resonance Spectroscopy and Physicochemical Appreciation. European Journal of Lipid Science and Technology, 2018, 120, 1700376.	1.0	10
103	The partial coalescence behavior of oil-in-water emulsions: Comparison between refrigerated and room temperature storage. Food Chemistry, 2019, 300, 125219.	4.2	10
104	Extraction Technology Can Impose Influences on Peanut Oil Functional Quality: A Study to Investigate the Lipid Metabolism by Sprague–Dawley Rat Model. Journal of Food Science, 2019, 84, 911-919.	1.5	10
105	Effects of epoxy stearic acid on lipid metabolism in HepG2 cells. Journal of Food Science, 2020, 85, 3644-3652.	1.5	10
106	Effect of infrared ray roasting on oxidation stability and flavor of virgin rapeseed oils. Journal of Food Science, 2021, 86, 2990-3000.	1.5	10
107	Deepâ€frying oil induces cytotoxicity, inflammation and apoptosis on intestinal epithelial cells. Journal of the Science of Food and Agriculture, 2022, 102, 3160-3168.	1.7	10
108	SWATH-MS2&1: Development and Validation of a Pseudotargeted Lipidomics Method for the Analysis of Glycerol Esters in Milk. Journal of Agricultural and Food Chemistry, 2022, 70, 3331-3343.	2.4	10

#	Article	IF	CITATIONS
109	Development and Application of Feature-Based Molecular Networking for Phospholipidomics Analysis. Journal of Agricultural and Food Chemistry, 2022, 70, 7815-7825.	2.4	10
110	Aqueous medium enzymatic preparation of l-alpha glycerylphosphorylcholine optimized by response surface methodology. European Food Research and Technology, 2012, 234, 485-491.	1.6	9
111	Preliminary Study on Acyl Incorporation and Migration in the Production of 1,3-diacylglycerol by Immobilized Lipozyme RM IM-catalyzed Esterification. Food Science and Technology Research, 2014, 20, 175-182.	0.3	9
112	High quality lard with low cholesterol content produced by aqueous enzymatic extraction and β•yclodextrin treatment. European Journal of Lipid Science and Technology, 2016, 118, 553-563.	1.0	9
113	Metabolomics reveals the impact of the saturation of dietary lipids on the aging and longevity of <i>C. elegans</i> . Molecular Omics, 2022, 18, 430-438.	1.4	9
114	Optimization of Extraction of Natural Pigment from Purple Sweet Potato by Response Surface Methodology and Its Stability. Journal of Chemistry, 2013, 2013, 1-5.	0.9	8
115	Characterization and Oxidative Stability of Human Milk Fat Substitutes Enzymatically Produced from Palm Stearin. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 481-495.	0.8	8
116	Secondary structure of proteins on oil release in aqueous enzymatic extraction of rapeseed oil as affected hydrolysis state. International Journal of Food Properties, 2018, 21, 119-127.	1.3	8
117	Lipid oxidation stability of ultraâ€highâ€temperature shortâ€time sterilization sporodermâ€broken pine pollen (UHTâ€PP) and ⁶⁰ Coâ€irradiation sterilization sporodermâ€broken pine pollen (⁶⁰ Coâ€PP). Journal of the Science of Food and Agriculture, 2019, 99, 675-684.	1.7	8
118	Investigating the calcium binding characteristics of black bean protein hydrolysate. Food and Function, 2020, 11, 8724-8734.	2.1	8
119	Comparative Study of the Oxidation Stability of High Oleic Oils and Palm Oil during Thermal Treatment. Journal of Oleo Science, 2020, 69, 573-584.	0.6	8
120	Moisture Sorption Thermodynamics of Camellia oleifera. Food Biophysics, 2012, 7, 163-172.	1.4	7
121	Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer and Metastasis Reviews, 2018, 37, 269-277.	2.7	7
122	Thermal Oxidation Rate of Oleic Acid Increased Dramatically at 140 °C Studied using Electron Spin Resonance and GC–MS/MS. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 937-944.	0.8	7
123	Effects of polar compounds in fried palm oil on liver lipid metabolism in C57 mice. Journal of Food Science, 2020, 85, 1915-1923.	1.5	7
124	Metabolomics reveals the toxicological effects of polar compounds from frying palm oil. Food and Function, 2020, 11, 1611-1623.	2.1	7
125	Influence of extraction technology on rapeseed oil functional quality: a study on rapeseed polyphenols. Food and Function, 2022, 13, 270-279.	2.1	7
126	Synthesis and application of magnetic surface molecularly imprinted polymers in selective solid-phase extraction of epoxy triglyceride from deep frying oil. Food Control, 2022, 137, 108896.	2.8	7

#	Article	IF	CITATIONS
127	Different typical dietary lipid consumption affects the bile acid metabolism and the gut microbiota structure: an animal trial using ⟨scp⟩Spragueâ€Dawley⟨ scp⟩ rats. Journal of the Science of Food and Agriculture, 2022, 102, 3179-3192.	1.7	6
128	Metabolomics identify landscape of food sensory properties. Critical Reviews in Food Science and Nutrition, 2023, 63, 8478-8488.	5.4	6
129	Enzymatic synthesis of monoacylglycerol citrate optimized by response surface methodology. European Journal of Lipid Science and Technology, 2011, 113, 609-615.	1.0	5
130	Analysis and Detection of Edible Oil Oxidation. Lipid Technology, 2016, 28, 145-148.	0.3	5
131	Sheaolein-based cold-soluble powder fats with medium- and long-chain triacylglycerol: production via chemical interesterification using sheaolein and palm kernel stearin. RSC Advances, 2016, 6, 18632-18640.	1.7	5
132	Synergistic Catalytic Synthesis of Gemini Lipoamino Acids Based on Multiple Hydrogen-Bonding Interactions in Natural Deep Eutectic Solvents-Enzyme System. Journal of Agricultural and Food Chemistry, 2020, 68, 989-997.	2.4	5
133	Crystallization behavior and nano-micro structure of lauric acid-rich fats with and without indigenous diglycerides. Food Chemistry, 2021, 365, 130458.	4.2	5
134	Identification of the Fatty Acyl Residues Composition and Molecular Species of Phosphatidylcholines in Soy Lecithin Powder by UPLC–ESI-MS/MS. Chromatographia, 2012, 75, 1271-1278.	0.7	4
135	Effect of processing conditions on the physiochemical properties and nutrients retention of spray-dried microcapsules using mixed protein system. CYTA - Journal of Food, 2019, 17, 25-35.	0.9	4
136	Caramel products of glucose with water during heating process and their bioactivities. International Journal of Food Properties, 2020, 23, 971-978.	1.3	4
137	Formation of Polar Compounds During Deepâ€ryingâ€"Determination by ¹ H NMR and ESR. European Journal of Lipid Science and Technology, 2020, 122, 1900363.	1.0	4
138	Stabilization and Release of Palm Tocotrienol Emulsion Fabricated Using pH-Sensitive Calcium Carbonate. Foods, 2021, 10, 358.	1.9	4
139	Influence of different dietary oil consumption on nutrient malabsorption: An animal trial using Sprague Dawley rats. Journal of Food Biochemistry, 2021, 45, e13695.	1.2	4
140	Pickering emulsionâ€templated ionotropic gelation of tocotrienol microcapsules: effects of alginate and chitosan concentrations and gelation process parameters. Journal of the Science of Food and Agriculture, 2021, 101, 5963-5971.	1.7	4
141	Portion mismatch in duplex oligonucleotides as inhibitors of bacterial topoisomerase I. RSC Advances, 2016, 6, 107572-107576.	1.7	3
142	Molecular, structural and biochemical characterization of a novel recombinant chlorophyllase from cyanobacterium Oscillatoria acuminata PCC 6304. Microbial Cell Factories, 2021, 20, 14.	1.9	3
143	The effect of krill oil on longevity and locomotion: a pilot study. Molecular Omics, 2022, 18, 206-213.	1.4	3
144	The Characteristics and Analysis of Polar Compounds in Deep-Frying Oil: a Mini Review. Food Analytical Methods, 2022, 15, 2767-2776.	1.3	3

#	Article	IF	CITATIONS
145	Preparation of Deoiled Soy Lecithin by Ultrafiltration. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1807-1812.	0.8	2
146	Purification of <scp> < scp>â€Î±â€Glycerylphosphorylcholine from the Enzyme Reaction Solutions by Resin Column Chromatography. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1155-1163.</scp>	0.8	1
147	Influence of polar compounds distribution in deepâ€frying oil on lipid digestion behaviour. International Journal of Food Science and Technology, 2022, 57, 3523-3531.	1.3	1
148	In vitro applicability of mixed soy lecithin-based liposomes with added several lipophilic agents as novel delivery systems for delivery of quercetin. Journal of Dispersion Science and Technology, 2023, 44, 1269-1277.	1.3	1
149	Lipidome reveals the alleviation of acrylamide-induced impairment by krill oil. Food and Function, 2022, 13, 8012-8021.	2.1	1
150	Highâ€efficiency sample preparation approach to determine acrylamide levels in highâ€fat foods. Journal of Separation Science, 2016, 39, 2950-2954.	1.3	0
151	Palm oil consumption and its repercussion on endogenous fatty acids distribution. Food and Function, 2021, 12, 2020-2031.	2.1	0
152	Alteration of Endogenous Fatty Acids Profile and Lipid Metabolism in Rats Caused by a Highâ€Colleseed Oil and a Highâ€Sunflower Oil Diet. European Journal of Lipid Science and Technology, 2021, 123, 2100100.	1.0	0