## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/131014/publications.pdf Version: 2024-02-01



FENC CAO

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. ACS Energy<br>Letters, 2022, 7, 550-559.                                                                                                                        | 8.8  | 23        |
| 2  | Emerging materials for circularly polarized light detection. Journal of Materials Chemistry C, 2022, 10, 2400-2410.                                                                                                                                     | 2.7  | 34        |
| 3  | New insights in construction of three-dimensional donor/acceptor interface for high performance perovskite solar cells the preparation of wolf tooth stick-like TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 128958. | 2.3  | 4         |
| 4  | Chirality Induced Crystal Structural Difference in Metal Halide Composites. Advanced Optical<br>Materials, 2022, 10, .                                                                                                                                  | 3.6  | 6         |
| 5  | Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science, 2022, 377, 307-310.                                                                                                                                           | 6.0  | 121       |
| 6  | The atomic-level structure of bandgap engineered double perovskite alloys<br>Cs <sub>2</sub> AgIn <sub>1â^'<i>x</i></sub> Fe <sub><i>x</i></sub> Cl <sub>6</sub> . Chemical Science,<br>2021, 12, 1730-1735.                                            | 3.7  | 34        |
| 7  | Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.                                                                                                                                                                  | 13.3 | 800       |
| 8  | Combining Two-Layer Semi-Three-Dimensional Reconstruction and Multi-Wavelength Image Fusion for<br>Functional Diffuse Optical Tomography. IEEE Transactions on Computational Imaging, 2021, 7, 1055-1068.                                               | 2.6  | 4         |
| 9  | A universal method for constructing high efficiency organic solar cells with stacked structures.<br>Energy and Environmental Science, 2021, 14, 2314-2321.                                                                                              | 15.6 | 75        |
| 10 | Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nature Communications, 2021, 12, 644.                                                                | 5.8  | 109       |
| 11 | High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer<br>Acceptor. Journal of the American Chemical Society, 2021, 143, 2665-2670.                                                                           | 6.6  | 245       |
| 12 | Preparation of Low Grain Boundary Perovskite Crystals with Excellent Performance: The Inhibition of Ammonium Iodide. ACS Omega, 2021, 6, 12858-12865.                                                                                                   | 1.6  | 5         |
| 13 | Ï€-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit<br>Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS Applied Materials & Interfaces, 2021, 13,<br>22531-22539.                                      | 4.0  | 22        |
| 14 | Carrier Mobility Dynamics under Actual Working Conditions of Organic Solar Cells. Journal of<br>Physical Chemistry C, 2021, 125, 14567-14575.                                                                                                           | 1.5  | 3         |
| 15 | Aligning Transition Dipole Moment toward Light Amplification and Polarized Emission in Hybrid<br>Perovskites. Advanced Optical Materials, 2021, 9, 2100984.                                                                                             | 3.6  | 4         |
| 16 | Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.                                                                                                                                                | 15.6 | 136       |
| 17 | Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nature Communications, 2021, 12, 4899.                                                                                                         | 5.8  | 30        |
| 18 | Leadâ€Free Double Perovskite Cs <sub>2</sub> AgBiBr <sub>6</sub> : Fundamentals, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2105898.                                                                                      | 7.8  | 166       |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reversible Ionic Polarization in Metal Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 283-289.                                                                                            | 1.5  | 2         |
| 20 | Spacer Cation Alloying in Ruddlesden–Popper Perovskites for Efficient Red Lightâ€Emitting Diodes with<br>Precisely Tunable Wavelengths. Advanced Materials, 2021, 33, e2104381.                            | 11.1 | 41        |
| 21 | Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano<br>Energy, 2020, 78, 105272.                                                                              | 8.2  | 132       |
| 22 | Single-emissive-layer all-perovskite white light-emitting diodes employing segregated mixed halide perovskite crystals. Chemical Science, 2020, 11, 11338-11343.                                           | 3.7  | 18        |
| 23 | From Generation to Extraction: A Time-Resolved Investigation of Photophysical Processes in Non-fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21283-21292.                     | 1.5  | 8         |
| 24 | Emerging Approaches in Enhancing the Efficiency and Stability in Nonâ€Fullerene Organic Solar Cells.<br>Advanced Energy Materials, 2020, 10, 2002746.                                                      | 10.2 | 124       |
| 25 | Efficiency enhancement of perovskite solar cells based on graphene-CuInS2 quantum dots composite:<br>The roles for fast electron injection and light harvests. Applied Surface Science, 2020, 528, 146560. | 3.1  | 15        |
| 26 | Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene<br>Solar Cell. Advanced Materials, 2020, 32, e1906763.                                               | 11.1 | 258       |
| 27 | Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy, 2019, 4, 768-775.                                                             | 19.8 | 407       |
| 28 | Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites.<br>Nature Communications, 2019, 10, 3456.                                                                  | 5.8  | 38        |
| 29 | Differentiating between ageing times of typical Chinese liquors by steady-state microelectrode voltammetry. Microchemical Journal, 2019, 151, 104244.                                                      | 2.3  | 7         |
| 30 | Efficient perovskite solar cells enabled by ion-modulated grain boundary passivation with a fill factor exceeding 84%. Journal of Materials Chemistry A, 2019, 7, 22359-22365.                             | 5.2  | 33        |
| 31 | Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale, 2019, 11, 2109-2120.                                                                                         | 2.8  | 211       |
| 32 | Control of Donor–Acceptor Photophysics through Structural Modification of a "Twisting―<br>Push–Pull Molecule. Chemistry of Materials, 2019, 31, 6860-6869.                                                 | 3.2  | 15        |
| 33 | The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells.<br>Materials Chemistry Frontiers, 2019, 3, 1642-1652.                                                    | 3.2  | 12        |
| 34 | Structural and Functional Diversity in Leadâ€Free Halide Perovskite Materials. Advanced Materials, 2019,<br>31, e1900326.                                                                                  | 11.1 | 198       |
| 35 | Stability Improvement of Perovskite Solar Cells for Application of CuInS <sub>2</sub> Quantum<br>Dot-Modified TiO <sub>2</sub> Nanoarrays. ACS Omega, 2019, 4, 3432-3438.                                  | 1.6  | 19        |
| 36 | Reliability of charge carrier recombination data determined with charge extraction methods. Journal of Applied Physics, 2019, 126, .                                                                       | 1.1  | 13        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability.<br>Journal of Physical Chemistry Letters, 2019, 10, 380-385.                                                                                       | 2.1  | 55        |
| 38 | Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.                                                                                           | 11.1 | 172       |
| 39 | Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied<br>Materials & Interfaces, 2018, 10, 16225-16230.                                                                                                      | 4.0  | 66        |
| 40 | Organic–Inorganic Hybrid Ruddlesden–Popper Perovskites: An Emerging Paradigm for<br>High-Performance Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2018, 9, 2251-2258.                                                                 | 2.1  | 59        |
| 41 | The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells.<br>Materials Horizons, 2018, 5, 206-221.                                                                                                                   | 6.4  | 122       |
| 42 | Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nature<br>Communications, 2018, 9, 608.                                                                                                                            | 5.8  | 322       |
| 43 | Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17, 119-128.                                                                                                                                                             | 13.3 | 2,315     |
| 44 | Long Electron–Hole Diffusion Length in Highâ€Quality Leadâ€Free Double Perovskite Films. Advanced<br>Materials, 2018, 30, e1706246.                                                                                                                    | 11.1 | 242       |
| 45 | Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with<br>CulnS2 quantum dots. Journal of Colloid and Interface Science, 2018, 513, 693-699.                                                                | 5.0  | 32        |
| 46 | Fullereneâ€Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresisâ€Free, and Stable<br>Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700435.                                                                   | 2.6  | 101       |
| 47 | Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning<br>Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials,<br>2018, 28, 1704507.                         | 7.8  | 180       |
| 48 | Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off.<br>Scientific Reports, 2018, 8, 15496.                                                                                                                   | 1.6  | 42        |
| 49 | Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical<br>Materials, 2018, 6, 1800667.                                                                                                                  | 3.6  | 91        |
| 50 | A minimal non-radiative recombination loss for efficient non-fullerene all-small-molecule organic<br>solar cells with a low energy loss of 0.54ÂeV and high open-circuit voltage of 1.15 V. Journal of<br>Materials Chemistry A, 2018, 6, 13918-13924. | 5.2  | 62        |
| 51 | High Performance and Stable Allâ€Inorganic Metal Halide Perovskiteâ€Based Photodetectors for Optical<br>Communication Applications. Advanced Materials, 2018, 30, e1803422.                                                                            | 11.1 | 342       |
| 52 | Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses. Advanced Energy<br>Materials, 2018, 8, 1801352.                                                                                                                       | 10.2 | 319       |
| 53 | Electronic phase engineering induced thermoelectric enhancement in manganites. Journal of Applied Physics, 2018, 124, 034501.                                                                                                                          | 1.1  | 1         |
| 54 | Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization. Chemical Communications, 2018, 54, 6887-6890.                                                                  | 2.2  | 11        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Tetrathienyl-functionalized red- and NIR-absorbing BODIPY dyes appending various peripheral substituents. Organic and Biomolecular Chemistry, 2017, 15, 1393-1399.                             | 1.5  | 15        |
| 56 | Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355, .                                                                                                  | 6.0  | 173       |
| 57 | Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.                  | 18.7 | 99        |
| 58 | Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium. Scientific Reports, 2017, 7, 46759.                | 1.6  | 11        |
| 59 | Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus<br>103. Scientific Reports, 2017, 7, 44786.                                                  | 1.6  | 15        |
| 60 | Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed<br>Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.                      | 3.2  | 35        |
| 61 | Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralowâ€Bandgap<br>Nonfullerene Acceptor. Advanced Materials, 2017, 29, 1703080.                              | 11.1 | 325       |
| 62 | Inhomogeneous degradation in metal halide perovskites. Applied Physics Letters, 2017, 111, .                                                                                                   | 1.5  | 19        |
| 63 | Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced<br>Materials, 2017, 29, 1604155.                                                                   | 11.1 | 360       |
| 64 | Fullereneâ€Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 2016, 28, 4734-4739.                                                         | 11.1 | 1,698     |
| 65 | Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and<br>Bacillus endophyticus Hbe603 in bacterial consortium. Scientific Reports, 2016, 6, 28794.     | 1.6  | 15        |
| 66 | Complete Genome Sequence of the Industrial Bacterium Ketogulonicigenium vulgare SKV. Genome<br>Announcements, 2016, 4, .                                                                       | 0.8  | 5         |
| 67 | Highly Efficient Perovskite Nanocrystal Lightâ€Emitting Diodes Enabled by a Universal Crosslinking<br>Method. Advanced Materials, 2016, 28, 3528-3534.                                         | 11.1 | 782       |
| 68 | Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells.<br>Nature Photonics, 2016, 10, 699-704.                                                    | 15.6 | 1,535     |
| 69 | Extended Intermolecular Interactions Governing Photocurrent–Voltage Relations in Ternary Organic<br>Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3936-3944.                    | 2.1  | 11        |
| 70 | Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for<br>Efficient Planar Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34446-34454.   | 4.0  | 36        |
| 71 | Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nature<br>Energy, 2016, 1, .                                                                          | 19.8 | 1,167     |
| 72 | Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602<br>based on comparative genomics and metabolomics studies. Scientific Reports, 2016, 6, 23068. | 1.6  | 23        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Band structure engineering in organic semiconductors. Science, 2016, 352, 1446-1449.                                                                                                                                                            | 6.0  | 239       |
| 74 | Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials,<br>2016, 28, 4532-4540.                                                                                                                      | 11.1 | 102       |
| 75 | Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.                                                           | 5.2  | 219       |
| 76 | Inverted all-polymer solar cells based on a quinoxaline–thiophene/naphthalene-diimide polymer blend<br>improved by annealing. Journal of Materials Chemistry A, 2016, 4, 3835-3843.                                                             | 5.2  | 57        |
| 77 | Morphology, Temperature, and Field Dependence of Charge Separation in High-Efficiency Solar Cells<br>Based on Alternating Polyquinoxaline Copolymer. Journal of Physical Chemistry C, 2016, 120, 4219-4226.                                     | 1.5  | 22        |
| 78 | Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their<br>Implications on Design Rules. Advanced Materials Interfaces, 2015, 2, 1500204.                                                             | 1.9  | 34        |
| 79 | The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A<br>Case Study on PBDTTT ‶:PC <sub>71</sub> BM. Advanced Materials, 2015, 27, 3868-3873.                                                   | 11.1 | 46        |
| 80 | Temperature Dependence of Charge Carrier Generation in Organic Photovoltaics. Physical Review<br>Letters, 2015, 114, 128701.                                                                                                                    | 2.9  | 96        |
| 81 | The effect of external electric field on the performance of perovskite solar cells. Organic Electronics, 2015, 18, 107-112.                                                                                                                     | 1.4  | 32        |
| 82 | A dual ternary system for highly efficient ITO-free inverted polymer solar cells. Journal of Materials<br>Chemistry A, 2015, 3, 18365-18371.                                                                                                    | 5.2  | 23        |
| 83 | Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals. RSC Advances, 2015, 5, 8216-8222.                                                    | 1.7  | 9         |
| 84 | Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer. Journal of Materials Chemistry A, 2015, 3, 504-508.                                                        | 5.2  | 15        |
| 85 | Ethanedithiol Treatment of Solutionâ€Processed ZnO Thin Films: Controlling the Intragap States of<br>Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics. Advanced<br>Energy Materials, 2015, 5, 1401606. | 10.2 | 157       |
| 86 | Energetics at Doped Conjugated Polymer/Electrode Interfaces. Advanced Materials Interfaces, 2015, 2,<br>1400403.                                                                                                                                | 1.9  | 28        |
| 87 | Effects of side groups on the kinetics of charge carrier recombination in dye molecule-doped multilayer organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 46-50.                                                        | 2.7  | 4         |
| 88 | Disodium Edetate As a Promising Interfacial Material for Inverted Organic Solar Cells and the Device<br>Performance Optimization. ACS Applied Materials & Interfaces, 2014, 6, 20569-20573.                                                     | 4.0  | 23        |
| 89 | Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of<br>Cathode Interlayer Materials. Advanced Energy Materials, 2014, 4, 1400359.                                                                | 10.2 | 98        |
| 90 | Trap-Induced Losses in Hybrid Photovoltaics. ACS Nano, 2014, 8, 3213-3221.                                                                                                                                                                      | 7.3  | 84        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Lowâ€Temperature Combustionâ€Synthesized Nickel Oxide Thin Films as Holeâ€Transport Interlayers for<br>Solutionâ€Processed Optoelectronic Devices. Advanced Energy Materials, 2014, 4, 1301460.                    | 10.2 | 110       |
| 92  | Neat C <sub>60</sub> :C <sub>70</sub> buckminsterfullerene mixtures enhance polymer solar cell performance. Journal of Materials Chemistry A, 2014, 2, 14354-14359.                                                | 5.2  | 25        |
| 93  | Charge generation in polymer–fullerene bulk-heterojunction solar cells. Physical Chemistry Chemical Physics, 2014, 16, 20291-20304.                                                                                | 1.3  | 190       |
| 94  | Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 17676-17682.                       | 5.2  | 48        |
| 95  | A New Tetracyclic Lactam Building Block for Thick, Broad-Bandgap Photovoltaics. Journal of the<br>American Chemical Society, 2014, 136, 11578-11581.                                                               | 6.6  | 73        |
| 96  | Synthesis of Unstable Colloidal Inorganic Nanocrystals through the Introduction of a Protecting Ligand. Nano Letters, 2014, 14, 3117-3123.                                                                         | 4.5  | 40        |
| 97  | Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors. Journal of Materials Chemistry A, 2014, 2, 12390.                                                            | 5.2  | 22        |
| 98  | Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells. Solar Energy Materials and Solar Cells, 2013, 114, 43-53.                                                  | 3.0  | 28        |
| 99  | The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy and Environmental Science, 2013, 6, 2020.                                                                                  | 15.6 | 108       |
| 100 | Carbazole Functionalized Isocyanide Brushes in Heterojunction Photovoltaic Devices. Journal of<br>Nanoscience and Nanotechnology, 2012, 12, 503-507.                                                               | 0.9  | 2         |
| 101 | Control of exciton spin statistics through spin polarization in organic optoelectronic devices.<br>Nature Communications, 2012, 3, 1191.                                                                           | 5.8  | 85        |
| 102 | Quantifying Loss Mechanisms in Polymer:Fullerene Photovoltaic Devices. Advanced Energy Materials,<br>2012, 2, 956-961.                                                                                             | 10.2 | 18        |
| 103 | Formation of Wellâ€Ordered Heterojunctions in Polymer:PCBM Photovoltaic Devices. Advanced<br>Functional Materials, 2011, 21, 139-146.                                                                              | 7.8  | 78        |
| 104 | Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar<br>Cells: A Transient Photocurrent and Photovoltage Study. Advanced Functional Materials, 2011, 21,<br>1419-1431. | 7.8  | 241       |
| 105 | Enhanced charge transport by incorporating additional thiophene units in the poly(fluorene-thienyl-benzothiadiazole) polymer. Organic Electronics, 2011, 12, 461-471.                                              | 1.4  | 21        |
| 106 | Entirely solution-processed write-once-read-many-times memory devices and their operation mechanism. Organic Electronics, 2011, 12, 1271-1274.                                                                     | 1.4  | 28        |
| 107 | Sequential Polymer Precipitation of Core–Shell Microstructured Composites with Giant Permittivity.<br>Macromolecular Rapid Communications, 2010, 31, 484-489.                                                      | 2.0  | 6         |
| 108 | Memristive devices based on solutionâ€processed ZnO nanocrystals. Physica Status Solidi (A)<br>Applications and Materials Science, 2010, 207, 484-487.                                                             | 0.8  | 38        |

| #   | Article                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | SELF-ASSEMBLED CORE-SHELL POLYMER DIELECTRIC PREPARED BY SOLUTION CASTING PROCESS. Integrated Ferroelectrics, 2010, 113, 1-8. | 0.3 | 0         |
| 110 | Formation of Nanopatterned Polymer Blends in Photovoltaic Devices. Nano Letters, 2010, 10, 1302-1307.                         | 4.5 | 248       |