Hironobu Naiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1309844/publications.pdf

Version: 2024-02-01

65 papers 2,592 citations

236925 25 h-index 189892 50 g-index

71 all docs

71 docs citations

times ranked

71

2888 citing authors

#	Article	IF	CITATIONS
1	ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 1-16.	3.0	257
2	Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14446-14451.	7.1	256
3	Establishment of a kinetic model of dialysis-related amyloid fibril extension <i>in vitro</i> . Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1997, 4, 223-232.	3.0	187
4	Critical Balance of Electrostatic and Hydrophobic Interactions Is Required for \hat{l}^2 2-Microglobulin Amyloid Fibril Growth and Stability. Biochemistry, 2005, 44, 1288-1299.	2.5	162
5	Ultrasonication-induced Amyloid Fibril Formation of \hat{I}^2 2-Microglobulin. Journal of Biological Chemistry, 2005, 280, 32843-32848.	3.4	153
6	Direct Measurement of the Thermodynamic Parameters of Amyloid Formation by Isothermal Titration Calorimetry. Journal of Biological Chemistry, 2004, 279, 55308-55314.	3.4	131
7	Investigation of a Peptide Responsible for Amyloid Fibril Formation of \hat{I}^2 2-Microglobulin by Achromobacter Protease I. Journal of Biological Chemistry, 2002, 277, 1310-1315.	3.4	116
8	Amyloid Fibril Formation in the Context of Full-length Protein. Journal of Biological Chemistry, 2003, 278, 47016-47024.	3.4	112
9	Heat-induced Conversion of \hat{I}^2 2-Microglobulin and Hen Egg-white Lysozyme into Amyloid Fibrils. Journal of Molecular Biology, 2007, 372, 981-991.	4.2	93
10	The Intrachain Disulfide Bond of Â2-Microglobulin Is Not Essential for the Immunoglobulin Fold at Neutral pH, but Is Essential for Amyloid Fibril Formation at Acidic pH. Journal of Biochemistry, 2002, 131, 45-52.	1.7	86
11	Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6654-6659.	7.1	82
12	Ultrasonication-Dependent Acceleration of Amyloid Fibril Formation. Journal of Molecular Biology, 2011, 412, 568-577.	4.2	66
13	Critical role of interfaces and agitation on the nucleation of $\hat{Al^2}$ amyloid fibrils at low concentrations of $\hat{Al^2}$ monomers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 986-995.	2.3	64
14	Seeding-dependent Maturation of \hat{l}^2 2-Microglobulin Amyloid Fibrils at Neutral pH. Journal of Biological Chemistry, 2005, 280, 12012-12018.	3.4	62
15	Amyloid Nucleation Triggered by Agitation of \hat{l}^2 (sub>2-Microglobulin under Acidic and Neutral pH Conditions. Biochemistry, 2008, 47, 2650-2660.	2.5	61
16	Significant association of cadaveric dura mater grafting with subpial ${\sf A}\hat{\sf I}^2$ deposition and meningeal amyloid angiopathy. Acta Neuropathologica, 2016, 132, 313-315.	7.7	59
17	Reversible Heat-Induced Dissociation of \hat{l}^2 (sub>2-Microglobulin Amyloid Fibrils. Biochemistry, 2011, 50, 3211-3220.	2.5	52
18	Molecular Pathogenesis of Protein Misfolding Diseases: Pathological Molecular Environments Versus Quality Control Systems Against Misfolded Proteins. Journal of Biochemistry, 2009, 146, 751-756.	1.7	50

#	Article	IF	Citations
19	Kinetically Controlled Thermal Response of \hat{l}^2 2-Microglobulin Amyloid Fibrils. Journal of Molecular Biology, 2005, 352, 700-711.	4.2	49
20	Molecular interactions in the formation and deposition of \hat{l}^2 ₂ -microglobulin-related amyloid fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2005, 12, 15-25.	3.0	35
21	Molecular pathogenesis of human amyloidosis: Lessons from β ₂ â€microglobulinâ€related amyloidosis. Pathology International, 2016, 66, 193-201.	1.3	35
22	Possible mechanisms of polyphosphate-induced amyloid fibril formation of \hat{l}^2 ₂ -microglobulin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12833-12838.	7.1	35
23	Postmortem CT is more accurate than clinical diagnosis for identifying the immediate cause of death in hospitalized patients: a prospective autopsy-based study. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 469, 101-109.	2.8	32
24	Aggregation-phase diagrams of \hat{l}^2 2-microglobulin reveal temperature and salt effects on competitive formation of amyloids versus amorphous aggregates. Journal of Biological Chemistry, 2018, 293, 14775-14785.	3.4	32
25	Heat-Triggered Conversion of Protofibrils into Mature Amyloid Fibrils of β2-Microglobulinâ€. Biochemistry, 2007, 46, 3286-3293.	2.5	26
26	Endocytosed \hat{I}^2 2-Microglobulin Amyloid Fibrils Induce Necrosis and Apoptosis of Rabbit Synovial Fibroblasts by Disrupting Endosomal/Lysosomal Membranes: A Novel Mechanism on the Cytotoxicity of Amyloid Fibrils. PLoS ONE, 2015, 10, e0139330.	2. 5	25
27	Human amyloidosis, still intractable but becoming curable: The essential role of pathological diagnosis in the selection of typeâ€specific therapeutics. Pathology International, 2020, 70, 191-198.	1.3	24
28	Multifaceted anti-amyloidogenic and pro-amyloidogenic effects of C-reactive protein and serum amyloid P component in vitro. Scientific Reports, 2016, 6, 29077.	3.3	22
29	Heparinâ€induced amyloid fibrillation of β ₂ â€microglobulin explained by solubility and a supersaturationâ€dependent conformational phase diagram. Protein Science, 2017, 26, 1024-1036.	7.6	22
30	Apolipoprotein E and clusterin inhibit the early phase of amyloid- \hat{l}^2 aggregation in an in vitro model of cerebral amyloid angiopathy. Acta Neuropathologica Communications, 2019, 7, 12.	5 . 2	22
31	Exothermic Effects Observed upon Heating of Î ² 2-Microglobulin Monomers in the Presence of Amyloid Seeds. Biochemistry, 2006, 45, 8760-8769.	2.5	21
32	Heating during agitation of \hat{l}^2 2-microglobulin reveals that supersaturation breakdown is required for amyloid fibril formation at neutral pH. Journal of Biological Chemistry, 2019, 294, 15826-15835.	3.4	20
33	C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E836-45.	7.1	15
34	Elevated Levels of Urinary Extracellular Vesicle Fibroblast-Specific Protein 1 in Patients with Active Crescentic Glomerulonephritis. Nephron, 2019, 141, 177-187.	1.8	15
35	Supersaturation-Limited and Unlimited Phase Spaces Compete to Produce Maximal Amyloid Fibrillation near the Critical Micelle Concentration of Sodium Dodecyl Sulfate. Langmuir, 2015, 31, 9973-9982.	3 . 5	14
36	Thermal Response with Exothermic Effects of \hat{I}^2 2-Microglobulin Amyloid Fibrils and Fibrillation. Journal of Molecular Biology, 2009, 389, 584-594.	4.2	13

3

#	Article	IF	Citations
37	Pathological examination of cerebral amyloid angiopathy in patients who underwent removal of lobar hemorrhages. Journal of Neurology, 2018, 265, 567-577.	3.6	12
38	Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia. Lung, 2017, 195, 469-476.	3.3	11
39	Chronic hypoxia exacerbates diabetic glomerulosclerosis through mesangiolysis and podocyte injury in db/db mice. Nephrology Dialysis Transplantation, 2020, 35, 1678-1688.	0.7	11
40	Surface-bound basement membrane components accelerate amyloid- \hat{l}^2 peptide nucleation in air-free wells: An in vitro model of cerebral amyloid angiopathy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1624-1631.	2.3	7
41	Newly recognized cerebral infarctions on postmortem imaging: a report of three cases with systemic infectious disease. BMC Medical Imaging, 2017, 17, 4.	2.7	7
42	Pathological review of cardiac amyloidosis using autopsy cases in a single Japanese institution. Pathology Research and Practice, 2021, 227, 153635.	2.3	6
43	Autopsy case with concurrent transthyretin and immunoglobulin amyloidosis. Pathology International, 2022, 72, 65-71.	1.3	5
44	Antiamyloidogenic and proamyloidogenic chaperone effects of C-reactive protein and serum amyloid P component. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 28-29.	3.0	3
45	Amyloid Formation under Complicated Conditions in Which \hat{l}^2 ₂ -Microglobulin Coexists with Its Proteolytic Fragments. Biochemistry, 2019, 58, 4925-4934.	2.5	3
46	Thioflavin T: not an all-rounder, but a trustworthy friend for over 27 years. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 9-9.	3.0	2
47	Clinical, pathological, and proteomic characteristics of newly diagnosed amyloidosis patients: Experience from a single referral center in Japan. Neurology and Clinical Neuroscience, 2021, 9, 37-44.	0.4	2
48	Development of Myeloperoxidase Anti-neutrophil Cytoplasmic Antibody-positive Necrotizing Crescentic Glomerulonephritis in an Elderly Patient with Immunological Kidney Disease. Internal Medicine, 2021, , .	0.7	2
49	Case With Transthyretin Amyloid Cardiomyopathy Complicated With Rapidly Progressive Aortic Stenosis Possibly Caused by Amyloid Deposition in the Aortic Valve. Circulation: Cardiovascular Imaging, 2021, 14, e013357.	2.6	2
50	Abdominal Fat Pad Fine-Needle Aspiration for Diagnosis of Cardiac Amyloidosis in Patients with Non-Ischemic Cardiomyopathy. International Heart Journal, 2022, 63, 49-55.	1.0	2
51	Subventricular glial nodules in neurofibromatosis 1 with craniofacial dysmorphism and occipital meningoencephalocele. ENeurologicalSci, 2019, 17, 100213.	1.3	1
52	Gastrointestinal AA amyloidosis secondary to chronic pyelonephritis presenting with refractory diarrhea and severe hypoalbuminemia. Clinical Journal of Gastroenterology, 2021, 14, 1642-1648.	0.8	1
53	2P105 Structural polymorphism of \hat{l}^2 _2-microglobulin amyloid fibrils induced by the addition of trifluoroethanol(31. Protein folding and misfolding (II),Poster Session,Abstract,Meeting Program of) Tj ETQq1 1	0.7 8.4 314	rg ® T /Overlo

 $3PO48\ Packing\ density\ of\ amiloid\ -like\ and\ amyloid\ fibrils (Proteins-stability,\ folding,\ and\ other)\ Tj\ ETQq0\ 0\ 0\ rgBT\ /Oyerlock\ 10\ Tf\ 50\ 62\ Tg\ 10\ Tf\ 50\ 62\ Tg\ 10\ Tg\ 10$

4

54

#	Article	IF	CITATIONS
55	3P055 Uniforming the Molecular Weigh of Amyloid Fibrils by Ultrasonication(Proteins-stability,) Tj ETQq1 1 0.784	-314 rgBT	/Qverlock <mark>10</mark>
56	3P-010 Analysis of the amyloid fiber extension mechanism using H/D exchange(The 46th Annual Meeting) Tj ETQo	_վ 0,010 rgB ⁻	Γ <i>[</i> Overlock]
57	2P-048 Analysis of the mechanism of the amyloid fiber extension using H/D exchange(Protein:Property,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S114.	0.1	0
58	2P-052 Site directed spin labeling - electron spin resonance analysis of the structure of amyloid fibrils(Protein:Property,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S114-S115.	0.1	0
59	2P051 High Speed Amyloid Fibrilization Induced by Ultrasonication(The 48th Annual Meeting of the) Tj ETQq1 1 (0.784314 r 0.1	rgBT /Overlo
60	1 PO64 Analysis of the intermediate state of the formation of the \hat{l}^2 2-microglobulin amyloid fibril using paramagnetic relaxation enhancement(Protein:Property,The 48th Annual Meeting of the Biophysical) Tj ETQq0 0 (0 αg ΒΤ /Ον	edock 10 Tf
61	2P069 The mechanism of ultrasonication-induced amyloid fibril formation(01C. Protein: Property). Seibutsu Butsuri, 2013, 53, S170.	0.1	O
62	Class I small leucine-rich proteoglycans (SLRPs) colocalise with the AÎ ² 2M amyloid deposits: implications for the roles of SLRP core proteins in the pathogenesis of dialysis-related amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 140-141.	3.0	0
63	Flavopiridol inhibits interleukin-6 secretion via degradation of RNA polymerase II in multi-cytokine-producing ThyL-6 cells originally established from patient with thymus cancer. Gout and Nucleic Acid Metabolism, 2010, 34, 179-187.	0.0	0
64	A Case of Actinomycosis with Tumor-like Invasion to the Intra and Extra Peritoneal Cavity Involving from the Subhepatic Space to the Right Gluteal Region. Nihon Rinsho Geka Gakkai Zasshi (Journal of) Tj ETQq0 0 (0 og6 Τ/Ον	edock 10 Tf
65	Elderly onset congenital hepatic fibrosis with portal hypertension diagnosed after recurrent cholangitis: a case report. Clinical Journal of Gastroenterology, 2022, , $1.$	0.8	0