Mohan Reddy Pallavolu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1309465/publications.pdf

Version: 2024-02-01

34 papers

735 citations

16 h-index 26 g-index

34 all docs 34 docs citations

times ranked

34

455 citing authors

#	Article	IF	CITATIONS
1	Superior energyâ€power performance of Nâ€doped carbon nanoâ€onionsâ€based asymmetric and symmetric supercapacitor devices. International Journal of Energy Research, 2022, 46, 1234-1249.	4.5	23
2	Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor. Journal of Materials Science and Technology, 2022, 96, 332-344.	10.7	32
3	In-situ design of porous vanadium nitride@carbon nanobelts: A promising material for high-performance asymmetric supercapacitors. Applied Surface Science, 2022, 575, 151734.	6.1	31
4	Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance. Journal of Colloid and Interface Science, 2022, 609, 434-446.	9.4	69
5	Facile construction and controllable design of CoTiO3@Co3O4/N CNO hybrid heterojunction nanocomposite electrode for high-performance supercapacitors. Electrochimica Acta, 2022, 407, 139868.	5.2	18
6	Effectively constructed by the interior and interface coexisting design of cobaltâ€doped ⟨scp⟩ NiFe ⟨sub⟩2⟨ sub⟩ S ⟨sub⟩4⟨ sub⟩ ⟨ scp⟩ nanosheets for highâ€performance supercapacitors. International Journal of Energy Research, 2022, 46, 9358-9370.	4.5	6
7	A novel hybridized needle-like Co3O4/N-CNO composite for superior energy storage asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 908, 164447.	5.5	16
8	A rational design of MnO2/CuO/r-GO hybrid and biomass-derived activated carbon for asymmetric supercapacitors. Journal of Energy Storage, 2022, 50, 104625.	8.1	14
9	Significance of rapid thermal annealing and its ramp rate effect on the properties of monoclinic CTS thin films. , 2022, 166, 207234.		1
10	Design and construction of hierarchical MnFe2Ce4@MnNiCe4 nanosheets on Ni foam as an advanced electrode for battery-type supercapacitor applications. Journal of Energy Storage, 2022, 51, 104542.	8.1	23
11	Pseudocapacitive Performance of Freestanding Ni ₃ V ₂ O ₈ Nanosheets for High Energy and Power Density Asymmetric Supercapacitors. ACS Applied Energy Materials, 2022, 5, 5561-5578.	5.1	21
12	Capsuleâ€shaped calcium and cobaltâ€doped <scp>ZnO</scp> electrodes for high electrochemical supercapacitor performance. International Journal of Energy Research, 2022, 46, 14334-14345.	4.5	4
13	Multiple structural defects in poor crystalline nickelâ€doped tungsten disulfide nanorods remarkably enhance supercapacitive performance. International Journal of Energy Research, 2022, 46, 14227-14239.	4.5	23
14	Self-Supported Co3O4@Mo-Co3O4 Needle-like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors. Nanomaterials, 2022, 12, 2330.	4.1	42
15	Fabrication of monoclinic-Cu2SnS3 thin-film solar cell and its photovoltaic device performance. Optical Materials, 2021, 111, 110668.	3.6	10
16	Morphological improvement of CH3NH3PbI3 films using blended solvents for perovskite solar cells. Korean Journal of Chemical Engineering, 2021, 38, 187-194.	2.7	8
17	Construction of Functionalized Carbon Nanofiber–g-C ₃ N ₄ and TiO ₂ Spheres as a Nanostructured Hybrid Electrode for High-Performance Supercapacitors. Energy & Description (2021), 35, 1796-1809.	5.1	27
18	Photoelectrochemical water oxidation kinetics and antibacterial studies of one-dimensional SiC nanowires synthesized from industrial waste. Journal of Solid State Electrochemistry, 2021, 25, 2457-2469.	2.5	4

#	Article	IF	CITATIONS
19	Effects of Ni - substitution on structural, magnetic hyperthermia, photocatalytic and cytotoxicity study of MgFe2O4 nanoparticles. Journal of Alloys and Compounds, 2021, 879, 160515.	5.5	41
20	Crafting nanoflower-built MnCo2S4 anchored to Ni foam as a prominent energy conversion and energy storage electrode for high-performance supercapacitor applications. Journal of Energy Storage, 2021, 43, 103155.	8.1	22
21	Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 886, 161234.	5 . 5	49
22	Bioinspired tailoring of nanoarchitectured nickel sulfide@nickel permeated carbon composite as highly durable and redox chemistry enabled battery-type electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 25208-25219.	10.3	32
23	Ni foam conductive substrate supported interwoven ZnCo2S4 nanowires with highly enhanced performances for supercapacitors. Journal of Energy Storage, 2021, 44, 103417.	8.1	16
24	Development of indium (In) doped SnSe thin films for photovoltaic application. Materials Letters, 2020, 281, 128714.	2.6	7
25	Status review on the Cu2SnSe3 (CTSe) thin films for photovoltaic applications. Solar Energy, 2020, 208, 1001-1030.	6.1	14
26	Effect of selenization temperature on the physical properties of Cu2SnSe3 thin films. Thin Solid Films, 2020, 709, 138238.	1.8	4
27	Investigation on the performance of SnS solar cells grown by sputtering and effusion cell evaporation. Korean Journal of Chemical Engineering, 2020, 37, 1066-1070.	2.7	6
28	Development of SnSe thin films through selenization of sputtered Sn-metal films. Journal of Materials Science: Materials in Electronics, 2019, 30, 15980-15988.	2.2	16
29	Effect of sulfurization time on the performance of monoclinic Cu2SnS3 solar cells. Solar Energy, 2019, 188, 209-217.	6.1	17
30	Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance. Journal of Industrial and Engineering Chemistry, 2019, 76, 39-74.	5.8	68
31	Green and low-cost preparation of CIGSe thin film by a nanocrystals ink based spin-coating method. Korean Journal of Chemical Engineering, 2019, 36, 2110-2117.	2.7	8
32	Eco-friendly synthesis of SnSe nanoparticles: effect of reducing agents on the reactivity of a Se-precursor and phase formation of SnSe NPs. New Journal of Chemistry, 2018, 42, 4843-4853.	2.8	33
33	Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications. Korean Journal of Chemical Engineering, 2018, 35, 2430-2441.	2.7	8
34	Effect of sulfurization temperature on the phase purity of Cu2SnS3 thin films deposited via high vacuum sulfurization. Applied Surface Science, 2018, 462, 641-648.	6.1	22