
## Kumuda C Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1309319/publications.pdf Version: 2024-02-01



KUMUDA C DAS

| #  | Article                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thioredoxin Prevents Loss of UCP2 in Hyperoxia via MKK4–p38 MAPK–PGC1α Signaling and Limits Oxygen<br>Toxicity. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 323-336.                                                                                                              | 2.9  | 7         |
| 2  | Thioredoxin Decreases Anthracycline Cardiotoxicity, But Sensitizes Cancer Cell Apoptosis.<br>Cardiovascular Toxicology, 2021, 21, 142-151.                                                                                                                                                                  | 2.7  | 9         |
| 3  | Nrg1l̂² Released in Remote Ischemic Preconditioning Improves Myocardial Perfusion and Decreases<br>Ischemia/Reperfusion Injury via ErbB2-Mediated Rescue of Endothelial Nitric Oxide Synthase and<br>Abrogation of Trx2 Autophagy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2293-2314. | 2.4  | 11        |
| 4  | Chaperone-Mediated Autophagy of eNOS in Myocardial Ischemia-Reperfusion Injury. Circulation Research, 2021, 129, 930-945.                                                                                                                                                                                   | 4.5  | 14        |
| 5  | Thioredoxin deficiency exacerbates vascular dysfunction during dietâ€induced obesity in small mesenteric artery in mice. Microcirculation, 2021, 28, e12674.                                                                                                                                                | 1.8  | 2         |
| 6  | Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial<br>ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged<br>mice. Aging, 2020, 12, 19809-19827.                                                                                        | 3.1  | 19        |
| 7  | Short-duration hyperoxia causes genotoxicity in mouse lungs: protection by volatile anesthetic<br>isoflurane. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316,<br>L903-L917.                                                                                             | 2.9  | 11        |
| 8  | Role of Thioredoxin in Age-Related Hypertension. Current Hypertension Reports, 2018, 20, 6.                                                                                                                                                                                                                 | 3.5  | 6         |
| 9  | Thioredoxin reverses age-related hypertension by chronically improving vascular redox and restoring eNOS function. Science Translational Medicine, 2017, 9, .                                                                                                                                               | 12.4 | 45        |
| 10 | Decreased EDHF-mediated relaxation is a major mechanism in endothelial dysfunction in resistance arteries in aged mice on prolonged high-fat sucrose diet. Physiological Reports, 2017, 5, e13502.                                                                                                          | 1.7  | 14        |
| 11 | Thioredoxin Uses a GSH-independent Route to Deglutathionylate Endothelial Nitric-oxide Synthase and<br>Protect against Myocardial Infarction. Journal of Biological Chemistry, 2016, 291, 23374-23389.                                                                                                      | 3.4  | 32        |
| 12 | Thioredoxin-deficient mice, a novel phenotype sensitive to ambient air and hypersensitive to<br>hyperoxia-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular<br>Physiology, 2015, 308, L429-L442.                                                                            | 2.9  | 20        |
| 13 | Thioredoxin Activates MKK4-NFκB Pathway in a Redox-dependent Manner to Control Manganese<br>Superoxide Dismutase Gene Expression in Endothelial Cells. Journal of Biological Chemistry, 2015, 290,<br>17505-17519.                                                                                          | 3.4  | 15        |
| 14 | Role of In Vivo Vascular Redox in Resistance Arteries. Hypertension, 2015, 65, 130-139.                                                                                                                                                                                                                     | 2.7  | 9         |
| 15 | Biphasic response of checkpoint control proteins in hyperoxia: exposure to lower levels of oxygen<br>induces genome maintenance genes in experimental baboon BPD. Molecular and Cellular Biochemistry,<br>2014, 395, 187-198.                                                                               | 3.1  | 11        |
| 16 | Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovascular Diabetology, 2013, 12, 142.                                                                                                                                       | 6.8  | 137       |
| 17 | Age-dependent mitochondrial energy dynamics in the mice heart: Role of superoxide dismutase-2.<br>Experimental Gerontology, 2013, 48, 947-959.                                                                                                                                                              | 2.8  | 28        |
| 18 | Hyperoxia Decreases Glycolytic Capacity, Glycolytic Reserve and Oxidative Phosphorylation in MLE-12<br>Cells and Inhibits Complex I and II Function, but Not Complex IV in Isolated Mouse Lung Mitochondria.<br>PLoS ONE, 2013, 8, e73358.                                                                  | 2.5  | 80        |

Kumuda C Das

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | c-Jun-NH2 terminal kinase (JNK)-mediates AP-1 activation by thioredoxin: phosphorylation of cJun, JunB,<br>and Fra-1. Molecular and Cellular Biochemistry, 2010, 337, 53-63.                                                                   | 3.1 | 21        |
| 20 | Reactive Oxygen Species-independent Oxidation of Thioredoxin in Hypoxia. Journal of Biological<br>Chemistry, 2009, 284, 17069-17081.                                                                                                           | 3.4 | 26        |
| 21 | Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to<br>hyperoxia: ATR-dependent ATM activation. American Journal of Physiology - Lung Cellular and<br>Molecular Physiology, 2008, 294, L998-L1006. | 2.9 | 39        |
| 22 | Endogenous Thioredoxin Is Required for Redox Cycling of Anthracyclines and p53-dependent Apoptosis<br>in Cancer Cells. Journal of Biological Chemistry, 2005, 280, 40084-40096.                                                                | 3.4 | 67        |
| 23 | Thioredoxin and Its Role in Premature Newborn Biology. Antioxidants and Redox Signaling, 2005, 7, 1740-1743.                                                                                                                                   | 5.4 | 22        |
| 24 | Increased Apoptosis and Expression of p21 and p53 in Premature Infant Baboon Model of Bronchopulmonary Dysplasia. Antioxidants and Redox Signaling, 2004, 6, 109-116.                                                                          | 5.4 | 35        |
| 25 | Thioredoxin System in Premature and Newborn Biology. Antioxidants and Redox Signaling, 2004, 6, 177-184.                                                                                                                                       | 5.4 | 33        |
| 26 | Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Molecular and<br>Cellular Biochemistry, 2004, 262, 127-133.                                                                                                 | 3.1 | 125       |
| 27 | Redox-cycling of anthracyclines by thioredoxin system: increased superoxide generation and DNA damage. Cancer Chemotherapy and Pharmacology, 2004, 54, 449-458.                                                                                | 2.3 | 45        |
| 28 | Altered Expression of Cyclins and Cdks in Premature Infant Baboon Model of Bronchopulmonary<br>Dysplasia. Antioxidants and Redox Signaling, 2004, 6, 117-127.                                                                                  | 5.4 | 18        |
| 29 | Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L87-L97.                                                                | 2.9 | 48        |
| 30 | Curcumin (diferuloylmethane), a singlet oxygen (1O2) quencher. Biochemical and Biophysical Research<br>Communications, 2002, 295, 62-66.                                                                                                       | 2.1 | 181       |
| 31 | c-Jun NH2-terminal Kinase-mediated Redox-dependent Degradation of IκB. Journal of Biological<br>Chemistry, 2001, 276, 4662-4670.                                                                                                               | 3.4 | 76        |
| 32 | Induction of Peroxiredoxin Gene Expression by Oxygen in Lungs of Newborn Primates. American<br>Journal of Respiratory Cell and Molecular Biology, 2001, 25, 226-232.                                                                           | 2.9 | 58        |
| 33 | Thioredoxin, a Singlet Oxygen Quencher and Hydroxyl Radical Scavenger: Redox Independent<br>Functions. Biochemical and Biophysical Research Communications, 2000, 277, 443-447.                                                                | 2.1 | 226       |
| 34 | Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by<br>oxygen. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L530-L539.                                   | 2.9 | 49        |
| 35 | Detection of thioredoxin in human serum and biological samples using a sensitive sandwich ELISA<br>with digoxigenin-labeled antibody. Journal of Immunological Methods, 1998, 211, 9-20.                                                       | 1.4 | 19        |
| 36 | Protein Kinase Cδ-dependent Induction of Manganese Superoxide Dismutase Gene Expression by<br>Microtubule-active Anticancer Drugs. Journal of Biological Chemistry, 1998, 273, 34639-34645.                                                    | 3.4 | 46        |

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Elevation of Manganese Superoxide Dismutase Gene Expression by Thioredoxin. American Journal of<br>Respiratory Cell and Molecular Biology, 1997, 17, 713-726. | 2.9 | 122       |
| 38 | Thiol modulation of TNF? and IL-1 induced MnSOD gene expression and activation of NF-?B. Molecular and Cellular Biochemistry, 1995, 148, 45-57.               | 3.1 | 124       |