
Jason J Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1309241/publications.pdf Version: 2024-02-01

IASON L DAVIS

#	Article	IF	CITATIONS
1	Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews, 2013, 42, 5944.	18.7	381
2	Antifouling Strategies for Selective <i>In Vitro</i> and <i>In Vivo</i> Sensing. Chemical Reviews, 2020, 120, 3852-3889.	23.0	325
3	Protein electrochemistry at carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 1997, 440, 279-282.	1.9	320
4	Chemical and Biochemical Sensing with Modified Single Walled Carbon Nanotubes. Chemistry - A European Journal, 2003, 9, 3732-3739.	1.7	292
5	An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosensors and Bioelectronics, 2013, 39, 94-98.	5.3	192
6	Reversible Luminescence Switching of a Redox-Active Ferrocene–Europium Dyad. Journal of the American Chemical Society, 2011, 133, 11847-11849.	6.6	149
7	Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 720-729.	0.9	148
8	Electrochemical Anion Sensing: Supramolecular Approaches. Chemical Reviews, 2020, 120, 1888-1935.	23.0	129
9	Zinc metalloporphyrin-functionalised nanoparticle anion sensorsElectronic supplementary information (ESI) available: synthetic procedure for 1 and 2, titration experimental protocol and nanoparticle TEM. See http://www.rsc.org/suppdata/cc/b3/b313658b/. Chemical Communications, 2004, , 414.	2.2	124
10	The label free picomolar detection of insulin in blood serum. Biosensors and Bioelectronics, 2013, 39, 21-25.	5.3	124
11	Environmentally responsive MRI contrast agents. Chemical Communications, 2013, 49, 9704.	2.2	122
12	Exploring the Electronic and Mechanical Properties of Protein Using Conducting Atomic Force Microscopy. Journal of the American Chemical Society, 2004, 126, 5601-5609.	6.6	120
13	Interlocked hostrotaxane and catenane structures for sensing charged guest species via optical and electrochemical methodologies. Organic and Biomolecular Chemistry, 2009, 7, 415-424.	1.5	119
14	Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Analytical Chemistry, 2019, 91, 8334-8340.	3.2	106
15	Ultrasensitive Label Free Electrical Detection of Insulin in Neat Blood Serum. Analytical Chemistry, 2013, 85, 4129-4134.	3.2	98
16	Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1′-bis(alkyl-N-amido)ferrocene. Chemical Communications, 2002, , 1716-1717.	2.2	97
17	Mechanically interlocked and switchable molecules at surfaces. Chemical Communications, 2010, 46, 54-63.	2.2	90
18	Low Fouling Protein Detection in Complex Biological Media Supported by a Designed Multifunctional Peptide. ACS Sensors, 2018, 3, 1210-1216.	4.0	89

#	Article	IF	CITATIONS
19	Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosensors and Bioelectronics, 2015, 71, 51-56.	5.3	87
20	Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. Contrast Media and Molecular Imaging, 2019, 2019, 1-13.	0.4	86
21	Capacitance Spectroscopy: A Versatile Approach To Resolving the Redox Density of States and Kinetics in Redox-Active Self-Assembled Monolayers. Journal of Physical Chemistry B, 2012, 116, 8822-8829.	1.2	85
22	Anion templated surface assembly of a redox-active sensory rotaxane. Chemical Communications, 2007, , 2234.	2.2	82
23	Multimodality and nanoparticles in medical imaging. Dalton Transactions, 2011, 40, 6087.	1.6	82
24	Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors. Chemical Communications, 2015, 51, 14640-14643.	2.2	81
25	A Dielectric Model of Self-Assembled Monolayer Interfaces by Capacitive Spectroscopy. Langmuir, 2012, 28, 9689-9699.	1.6	79
26	Sulfate anion templation of a neutral pseudorotaxane assembly using an indolocarbazole threading component. Chemical Communications, 2008, , 3154.	2.2	77
27	Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angewandte Chemie - International Edition, 2010, 49, 5776-5779.	7.2	74
28	Label free redox capacitive biosensing. Biosensors and Bioelectronics, 2013, 50, 437-440.	5.3	74
29	The robust electrochemical detection of a Parkinson's disease marker in whole blood sera. Chemical Science, 2012, 3, 3468.	3.7	72
30	Protein adsorption at a gold electrode studied by in situ scanning tunnelling microscopy. New Journal of Chemistry, 1998, 22, 1119-1123.	1.4	68
31	Sensitive Affimer and Antibody Based Impedimetric Label-Free Assays for C-Reactive Protein. Analytical Chemistry, 2012, 84, 6553-6560.	3.2	68
32	Label-free Capacitive Diagnostics: Exploiting Local Redox Probe State Occupancy. Analytical Chemistry, 2014, 86, 2559-2564.	3.2	67
33	Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface. Analytical Chemistry, 2018, 90, 3005-3008.	3.2	66
34	Concentration-Normalized Electroanalytical Assaying of Exosomal Markers. Analytical Chemistry, 2017, 89, 3184-3190.	3.2	65
35	Point of Care Sensors for Infectious Pathogens. Analytical Chemistry, 2021, 93, 184-197.	3.2	63
36	Measuring Quantum Capacitance in Energetically Addressable Molecular Layers. Analytical Chemistry, 2014, 86, 1337-1341.	3.2	62

#	Article	IF	CITATIONS
37	Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Mikrochimica Acta, 2015, 182, 1123-1129.	2.5	62
38	Validation of α‧ynuclein in <scp>L1CAM</scp> â€Immunocaptured Exosomes as a Biomarker for the Stratification of Parkinsonian Syndromes. Movement Disorders, 2021, 36, 2663-2669.	2.2	62
39	The scanning probe microscopy of metalloproteins and metalloenzymes. Chemical Communications, 2002, , 393-401.	2.2	61
40	Label-Free Sub-picomolar Protein Detection with Field-Effect Transistors. Analytical Chemistry, 2010, 82, 3531-3536.	3.2	61
41	Solution and surface-confined chloride anion templated redox-active ferrocene catenanes. Chemical Science, 2012, 3, 1080.	3.7	61
42	Elucidating Capacitance and Resistance Terms in Confined Electroactive Molecular Layers. Analytical Chemistry, 2013, 85, 411-417.	3.2	58
43	Exploiting the mechanical bond for molecular recognition and sensing of charged species. Materials Chemistry Frontiers, 2020, 4, 1052-1073.	3.2	58
44	Redox and Label-Free Array Detection of Protein Markers in Human Serum. Analytical Chemistry, 2014, 86, 5553-5558.	3.2	55
45	Peptide Aptamers in Label-Free Protein Detection: 1. Characterization of the Immobilized Scaffold. Analytical Chemistry, 2007, 79, 1089-1096.	3.2	54
46	Location-tuned relaxivity in Gd-doped mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012, 22, 22848.	6.7	53
47	Spatially Controlled Suzuki and Heck Catalytic Molecular Coupling. Journal of the American Chemical Society, 2006, 128, 14135-14141.	6.6	50
48	Halogen Bonding Tetraphenylethene Anion Receptors: Anionâ€Induced Emissive Aggregates and Photoswitchable Recognition. Angewandte Chemie - International Edition, 2021, 60, 19442-19450.	7.2	49
49	Spatially Resolved Suzuki Coupling Reaction Initiated and Controlled Using a Catalytic AFM Probe. Journal of the American Chemical Society, 2005, 127, 13082-13083.	6.6	47
50	Metalloprotein tunnel junctions: compressional modulation of barrier height and transport mechanism. Faraday Discussions, 2006, 131, 167-179.	1.6	47
51	Amplification of anion sensing by disulfide functionalized ferrocene and ferrocene-calixarene receptors adsorbed onto gold surfaces. Dalton Transactions, 2010, 39, 6532.	1.6	47
52	Facile Impedimetric Analysis of Neuronal Exosome Markers in Parkinson's Disease Diagnostics. Analytical Chemistry, 2020, 92, 13647-13651.	3.2	47
53	A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosensors and Bioelectronics, 2018, 100, 519-525.	5.3	46
54	A scanning tunnelling study of immobilised cytochrome P450cam. Faraday Discussions, 2000, 116, 15-22.	1.6	45

#	Article	IF	CITATIONS
55	Force dependent metalloprotein conductance by conducting atomic force microscopy. Nanotechnology, 2003, 14, 1023-1028.	1.3	45
56	Peptide Aptamers in Label-Free Protein Detection: 2. Chemical Optimization and Detection of Distinct Protein Isoforms. Analytical Chemistry, 2009, 81, 3314-3320.	3.2	45
57	Capacitance spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 9375-9382.	1.3	45
58	A halogen-bonding foldamer molecular film for selective reagentless anion sensing in water. Chemical Communications, 2019, 55, 4849-4852.	2.2	45
59	Anion Sensing by Solution―and Surfaceâ€Assembled Osmium(II) Bipyridyl Rotaxanes. Chemistry - A European Journal, 2013, 19, 15898-15906.	1.7	44
60	Elucidating Redox-Level Dispersion and Local Dielectric Effects within Electroactive Molecular Films. Analytical Chemistry, 2014, 86, 1997-2004.	3.2	44
61	Reagentless Redox Capacitive Assaying of C-Reactive Protein at a Polyaniline Interface. Analytical Chemistry, 2020, 92, 3508-3511.	3.2	42
62	Anion Templated Formation of Pseudorotaxane and Rotaxane Monolayers on Gold from Neutral Components. Langmuir, 2009, 25, 2935-2940.	1.6	41
63	The Diagnostic Utility of Electrochemical Impedance. Electroanalysis, 2014, 26, 1249-1258.	1.5	40
64	Charge transport and energy storage at the molecular scale: from nanoelectronics to electrochemical sensing. Chemical Society Reviews, 2020, 49, 7505-7515.	18.7	39
65	Redox-Switchable Chalcogen Bonding for Anion Recognition and Sensing. Journal of the American Chemical Society, 2022, 144, 8827-8836.	6.6	39
66	Genetic modulation of metalloprotein electron transfer at bare gold. Chemical Communications, 2003, , 576-577.	2.2	37
67	Anion Sensing Porphyrin Functionalized Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 32-40.	1.9	37
68	Surface-attached sensors for cation and anion recognition. Analytical and Bioanalytical Chemistry, 2012, 402, 1739-1748.	1.9	37
69	Mesoporous Silica Nanoparticles in Bioimaging. Materials, 2020, 13, 3795.	1.3	37
70	Immittance Electroanalysis in Diagnostics. Analytical Chemistry, 2015, 87, 944-950.	3.2	35
71	Quantum capacitance as a reagentless molecular sensing element. Nanoscale, 2017, 9, 15362-15370.	2.8	34
72	Graphene Oxide Interfaces in Serum Based Autoantibody Quantification. Analytical Chemistry, 2015, 87, 346-350.	3.2	33

#	Article	IF	CITATIONS
73	The application of electrochemical scanning probe microscopy to the interpretation of metalloprotein voltammetry. Coordination Chemistry Reviews, 2000, 200-202, 411-442.	9.5	32
74	Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. Nano-Micro Letters, 2022, 14, 3.	14.4	31
75	Exploiting lanthanide luminescence in supramolecular assemblies. Chemical Communications, 2014, 50, 5678-5687.	2.2	30
76	Reversible redox modulation of a lanthanide emissive molecular film. Chemical Communications, 2015, 51, 6515-6517.	2.2	30
77	Sensing Nitrite through a Pseudoazurin-Nitrite Reductase Electron Transfer Relay. ChemPhysChem, 2005, 6, 1114-1120.	1.0	29
78	Enhanced Photocurrent in Engineered Bacteriorhodopsin Monolayer. Journal of Physical Chemistry B, 2012, 116, 683-689.	1.2	29
79	Optimized Diagnostic Assays Based on Redox Tagged Bioreceptive Interfaces. Analytical Chemistry, 2015, 87, 12137-12144.	3.2	29
80	The Mesoscopic Electrochemistry of Molecular Junctions. Scientific Reports, 2016, 6, 18400.	1.6	28
81	Force modulation and electrochemical gating of conductance in a cytochrome. Journal of Physics Condensed Matter, 2008, 20, 374123.	0.7	27
82	Theoretical Analysis of the Relative Significance of Thermodynamic and Kinetic Dispersion in the dc and ac Voltammetry of Surface-Confined Molecules. Langmuir, 2015, 31, 4996-5004.	1.6	27
83	Enhanced voltammetric anion sensing at halogen and hydrogen bonding ferrocenyl SAMs. Chemical Science, 2021, 12, 2433-2440.	3.7	27
84	Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New Journal of Chemistry, 2009, 33, 769.	1.4	26
85	Graphene-based protein biomarker detection. Bioanalysis, 2015, 7, 725-742.	0.6	26
86	Acyclic halogen and hydrogen bonding diquat-containing receptors for the electrochemical sensing of anions. Polyhedron, 2016, 116, 20-25.	1.0	26
87	Ultrasensitive Impedimetric Immunosensor for the Detection of C-Reactive Protein in Blood at Surface-Initiated-Reversible Addition–Fragmentation Chain Transfer Generated Poly(2-hydroxyethyl) Tj ETQq1	1 03728431	14 n g6 T /Over
88	Anion templated assembly of an indolocarbazole containing pseudorotaxane on beads and silica nanoparticles. New Journal of Chemistry, 2009, 33, 760.	1.4	25
89	Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging. Journal of Materials Chemistry, 2009, 19, 8341.	6.7	25
90	High signal contrast gating with biomodified Gd doped mesoporous nanoparticles. Chemical Communications, 2013, 49, 60-62.	2.2	25

#	Article	IF	CITATIONS
91	Molecular Scale Conductance Photoswitching in Engineered Bacteriorhodopsin. Nano Letters, 2012, 12, 899-903.	4.5	24
92	Dy-DOTA integrated mesoporous silica nanoparticles as promising ultrahigh field magnetic resonance imaging contrast agents. Nanoscale, 2018, 10, 21041-21045.	2.8	24
93	Solvent Effects in Halogen and Hydrogen Bonding Mediated Electrochemical Anion Sensing in Aqueous Solution and at Interfaces. Chemistry - A European Journal, 2021, 27, 10201-10209.	1.7	24
94	Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride. Dalton Transactions, 2014, 43, 17274-17282.	1.6	23
95	Ratiometric oxygen sensing using lanthanide luminescent emitting interfaces. Chemical Communications, 2015, 51, 15944-15947.	2.2	23
96	Mapping the ionic fingerprints of molecular monolayers. Physical Chemistry Chemical Physics, 2017, 19, 15098-15109.	1.3	22
97	Molecularly Resolved Protein Electromechanical Properties. Journal of Physical Chemistry B, 2007, 111, 9062-9068.	1.2	20
98	Reversible Recruitment and Emission of DO3A-Derived Lanthanide Complexes at Ligating Molecular Films on Gold. Langmuir, 2013, 29, 1475-1482.	1.6	20
99	Magnetic Nanoparticles Supporting Bio-responsive T1/T2 Magnetic Resonance Imaging. Materials, 2019, 12, 4096.	1.3	19
100	HIGH RESOLUTION SCANNING FORCE MICROSCOPY OF CARDIAC MYOCYTES. Cell Biology International, 2001, 25, 1271-1277.	1.4	18
101	Molecular electron transfer of protein junctions characterised by conducting atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2005, 40, 189-194.	2.5	18
102	An impedimetric assay of α-synuclein autoantibodies in early stage Parkinson's disease. RSC Advances, 2014, 4, 58773-58777.	1.7	18
103	Interfacial sensing: surface assembled molecular receptors. Chemical Communications, 2005, , 3509.	2.2	16
104	Large Amplitude Conductance Gating in a Wired Redox Molecule. Journal of Physical Chemistry Letters, 2010, 1, 1541-1546.	2.1	16
105	Functional Molecular Interfaces for Impedance-Based Diagnostics. Annual Review of Analytical Chemistry, 2020, 13, 183-200.	2.8	15
106	The nanoscopic principles of capacitive ion sensing interfaces. Physical Chemistry Chemical Physics, 2020, 22, 3770-3774.	1.3	15
107	Mechanistic studies of AFM probe-driven Suzuki and Heck molecular coupling. Nanotechnology, 2010, 21, 265302.	1.3	13
108	Characterising the biosensing interface. Analytica Chimica Acta, 2022, 1216, 339759.	2.6	13

#	Article	IF	CITATIONS
109	Tunnelling conductance of vectorial porphyrin monolayers. Journal of Materials Chemistry, 2008, 18, 3109.	6.7	12
110	Engineered Bacteriorhodopsin: A Molecular Scale Potential Switch. Chemistry - A European Journal, 2012, 18, 5632-5636.	1.7	12
111	Engineering Cytochromeâ€Modified Silica Nanoparticles To Induce Programmed Cell Death. Chemistry - A European Journal, 2013, 19, 17891-17898.	1.7	11
112	Continuous and Polarization-Tuned Redox Capacitive Anion Sensing at Electroactive Interfaces. Journal of the American Chemical Society, 2021, 143, 19199-19206.	6.6	11
113	Homogeneous functional self-assembled monolayers: Faradaic impedance baseline signal drift suppression for high-sensitivity immunosensing of C-reactive protein. Journal of Electroanalytical Chemistry, 2020, 856, 113675.	1.9	10
114	Realâ€ŧime Voltammetric Anion Sensing Under Flow**. Chemistry - A European Journal, 2021, 27, 17700-17706.	1.7	10
115	Halogen Bonding Tetraphenylethene Anion Receptors: Anionâ€Induced Emissive Aggregates and Photoswitchable Recognition. Angewandte Chemie, 2021, 133, 19591-19599.	1.6	9
116	A Facile Measurement of Heterogeneous Electron Transfer Kinetics. Analytical Chemistry, 2013, 85, 10920-10926.	3.2	6
117	Ligation driven ¹⁹ F relaxation enhancement in self-assembled Ln(<scp>iii</scp>) complexes. Chemical Communications, 2015, 51, 2918-2920.	2.2	6
118	Water gated contrast switching with polymer–silica hybrid nanoparticles. Chemical Communications, 2019, 55, 8540-8543.	2.2	6
119	Introducing polymer conductance in diagnostically relevant transduction. Biosensors and Bioelectronics, 2021, 172, 112705.	5.3	6
120	Open Circuit Potential as a Tool for the Assessment of Binding Kinetics and Reagentless Protein Quantitation. Analytical Chemistry, 2021, 93, 14748-14754.	3.2	6
121	A Quantification of Target Protein Biomarkers in Complex Media by Faradaic Shotgun Tagging. Analytical Chemistry, 2022, 94, 2375-2382.	3.2	5
122	Functionalization of Single-Wall Carbon Nanotubes with Quantum Dots and Proteins. AIP Conference Proceedings, 2002, , .	0.3	0
123	Chemical and Biochemical Sensing with Modified Single Walled Carbon Nanotubes. ChemInform, 2003, 34, no.	0.1	0
124	Applying Atomic Force Microscopy to Studies in Cardiac Physiology. , 2004, 242, 161-178.		0
125	EXPLORING TUNNEL TRANSPORT THROUGH PROTEIN AT THE MOLECULAR LEVEL. Series on Iraq War and Its Consequences, 2007, , 167-193.	0.1	0
126	Promoting high T2 contrast in Dy-doped MSNs through Curie effects. Journal of Materials Chemistry B, 2022, 10, 302-305.	2.9	0