Miao Guo

List of Publications by Citations

Source: https://exaly.com/author-pdf/1308897/miao-guo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

84 1,832 21 41 g-index

87 2,312 6.3 5.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
84	Energy Demand Side Management within micro-grid networks enhanced by blockchain. <i>Applied Energy</i> , 2018 , 228, 1385-1398	10.7	195
83	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. <i>Progress in Energy and Combustion Science</i> , 2019 , 71, 1-80	33.6	184
82	LCA data quality: sensitivity and uncertainty analysis. <i>Science of the Total Environment</i> , 2012 , 435-436, 230-43	10.2	139
81	Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. <i>Biomaterials</i> , 2011 , 32, 185-94	15.6	127
80	Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?. <i>Biotechnology for Biofuels</i> , 2017 , 10, 87	7.8	112
79	Magnetic and pH-responsive nanocarriers with multilayer coreBhell architecture for anticancer drug delivery. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5104		105
78	A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. <i>Bioresource Technology</i> , 2016 , 199, 288-299	11	103
77	Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater. <i>Bioresource Technology</i> , 2016 , 215, 227-238	11	59
76	Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota. <i>Chemical Engineering Journal</i> , 2020 , 380, 122425	14.7	45
75	The environmental profile of bioethanol produced from current and potential future poplar feedstocks in the EU. <i>Green Chemistry</i> , 2014 , 16, 4680-4695	10	37
74	A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation. <i>Environmental Science & Environmental Science & Environment</i>	10.3	36
73	Blockchain-based smart contract for energy demand management. Energy Procedia, 2019, 158, 2719-27	24 3	33
72	Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. <i>Science of the Total Environment</i> , 2016 , 568, 489-497	10.2	31
71	Preparation of narrow or mono-disperse crosslinked poly((meth)acrylic acid)/iron oxide magnetic microspheres. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4535		31
70	Phytoremediation: Climate change resilience and sustainability assessment at a coastal brownfield redevelopment. <i>Environment International</i> , 2019 , 130, 104945	12.9	29
69	Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment. <i>Bioresource Technology</i> , 2011 , 102, 11137-46	11	27
68	Biomass Conversion into Fuels, Chemicals, or Electricity? A Network-Based Life Cycle Optimization Approach Applied to the European Union. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10570-10) 582	25

(2013-2013)

67	Is it possible to develop biopolymer production systems independent of fossil fuels? Case study in energy profiling of polyhydroxybutyrate-valerate (PHBV). <i>Green Chemistry</i> , 2013 , 15, 706	10	24
66	Implementing land-use and ecosystem service effects into an integrated bioenergy value chain optimisation framework. <i>Computers and Chemical Engineering</i> , 2016 , 91, 392-406	4	24
65	Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. <i>Biotechnology for Biofuels</i> , 2014 , 7, 113	7.8	23
64	Influence of agro-ecosystem modeling approach on the greenhouse gas profiles of wheat-derived biopolymer products. <i>Environmental Science & Environmental & Environmen</i>	10.3	17
63	An overview to process design, simulation and sustainability evaluation of biodiesel production. <i>Biotechnology for Biofuels</i> , 2021 , 14, 129	7.8	17
62	Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?. <i>Biotechnology for Biofuels</i> , 2015 , 8, 134	7.8	16
61	Environmental profile of algal Hydrothermal Liquefaction [A country specific case study. <i>Algal Research</i> , 2016 , 16, 127-140	5	16
60	A holistic resilience framework development for rural power systems in emerging economies. <i>Applied Energy</i> , 2019 , 235, 219-232	10.7	16
59	Scale-up and Sustainability Evaluation of Biopolymer Production from Citrus Waste Offering Carbon Capture and Utilisation Pathway. <i>ChemistryOpen</i> , 2019 , 8, 668-688	2.3	15
58	The influence of raw material availability and utility power consumption on the sustainability of the ammonia process. <i>Chemical Engineering Research and Design</i> , 2020 , 158, 177-192	5.5	13
57	Multi-level system modelling of the resource-food-bioenergy nexus in the global south. <i>Energy</i> , 2020 , 197, 117196	7.9	13
56	Towards greater sustainable development within current Mega-Methanol (MM) production. <i>Green Chemistry</i> , 2020 , 22, 4279-4294	10	12
55	Waste-to-Resource Transformation: Gradient Boosting Modeling for Organic Fraction Municipal Solid Waste Projection. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10460-10466	8.3	11
54	Planning of Food-Energy-Water-Waste (FEW2) nexus for sustainable development. <i>BMC Chemical Engineering</i> , 2020 , 2,	3.5	11
53	Assessment of technical and environmental performances of wheat-based foams in thermal packaging applications. <i>Packaging Technology and Science</i> , 2010 , 23, 363-382	2.3	11
52	Development of a responsive optimisation framework for decision-making in precision agriculture. <i>Computers and Chemical Engineering</i> , 2019 , 131, 106585	4	10
51	Is There a Generic Environmental Advantage for Starch PVOH Biopolymers Over Petrochemical Polymers?. <i>Journal of Polymers and the Environment</i> , 2012 , 20, 976-990	4.5	10
50	End-of-life of starch-polyvinyl alcohol biopolymers. <i>Bioresource Technology</i> , 2013 , 127, 256-66	11	9

49	Sustainable Design of Urban Rooftop Food-Energy-Land Nexus. <i>IScience</i> , 2020 , 23, 101743	6.1	9
48	Hydrogen Generation Performance from Taihu Algae and Food Waste by Anaerobic Codigestion. <i>Energy & Energy & En</i>	4.1	9
47	Global environmental and nutritional assessment of national food supply patterns: Insights from a data envelopment analysis approach. <i>Science of the Total Environment</i> , 2021 , 755, 142826	10.2	8
46	Emerging supply chain of utilising electrical vehicle retired batteries in distributed energy systems. <i>Advances in Applied Energy</i> , 2021 , 1, 100002		8
45	Wastewater To Resource: Design of a Sustainable Phosphorus Recovery System. <i>ChemistryOpen</i> , 2019 , 8, 1109-1120	2.3	7
44	Optimisation of Wastewater Treatment and Recovery Solutions in Industrial Parks. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 1407-1412	0.6	7
43	Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2. <i>Applied Energy</i> , 2020 , 259, 114184	10.7	7
42	Protein from renewable resources: mycoprotein production from agricultural residues. <i>Green Chemistry</i> , 2021 , 23, 5150-5165	10	7
41	Energy Demand Side Management with supply constraints: Game theoretic Approach. <i>Energy Procedia</i> , 2018 , 145, 368-373	2.3	7
40	Multi-scale system modelling under circular bioeconomy. <i>Computer Aided Chemical Engineering</i> , 2018 , 833-838	0.6	7
39	Achieving absolute sustainability across integrated industrial networks across study on the ammonia process. <i>Green Chemistry</i> , 2020 , 22, 6547-6559	10	6
38	Optimisation of wastewater treatment strategies in eco-industrial parks: Technology, location and transport. <i>Chemical Engineering Journal</i> , 2020 , 381, 122643	14.7	6
37	Climate smart process design for current and future methanol production. <i>Journal of CO2 Utilization</i> , 2021 , 44, 101399	7.6	6
36	Waste-to-Resource value chain optimisation: Combining spatial, chemical and technoeconomic aspects. <i>Water Research</i> , 2020 , 178, 115842	12.5	5
35	Optimisation of Integrated Bioenergy and Concentrated Solar Power Supply Chains in South Africa. <i>Computer Aided Chemical Engineering</i> , 2018 , 1463-1468	0.6	5
34	Biodiesel production with enzymatic technology: progress and perspectives. <i>Biofuels, Bioproducts and Biorefining</i> , 2021 , 15, 1526-1548	5.3	5
33	Phytoremediation value chains and modeling 2020 , 325-366		4
32	Life Cycle Inventory and Assessment Datasets on the Operational Sustainability of the Ammonia Process. <i>Data in Brief</i> , 2020 , 30, 105593	1.2	4

(2015-2017)

31	Waste-Energy-Water systems in sustainable city development using the resilience.io platform. <i>Computer Aided Chemical Engineering</i> , 2017 , 2377-2382	0.6	4
30	Life Cycle Assessment (LCA) of Light-Weight Eco-composites. Springer Theses, 2012,	0.1	4
29	What is required for resource-circular CO2 utilization within Mega-Methanol (MM) production?. <i>Journal of CO2 Utilization</i> , 2021 , 45, 101451	7.6	3
28	Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design. <i>Applied Energy</i> , 2021 , 290, 116773	10.7	3
27	Integrated multi-level bioenergy supply chain modelling applied to sugarcane biorefineries in South Africa. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 2037-2042	0.6	3
26	Using system dynamics to assess the complexity of rural toilet retrofitting: Case study in eastern China. <i>Journal of Environmental Management</i> , 2021 , 280, 111655	7.9	3
25	Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities <i>Phytochemistry Reviews</i> , 2022 , 1-26	7.7	3
24	Experimental Vortex Flow Patterns in the Primary and Secondary Pump Intakes of a Model Underground Pumping Station. <i>Energies</i> , 2020 , 13, 1790	3.1	2
23	Scale-up and Sustainability Evaluation of Biopolymer Production from Citrus Waste Offering Carbon Capture and Utilisation Pathway. <i>ChemistryOpen</i> , 2019 , 8, 659	2.3	2
22	Incorporating life cycle assessment indicators into optimal electric vehicle charging strategies: An integrated modelling approach. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 241-246	0.6	2
21	Protein from Renewable Resources: Mycoprotein Production from Agricultural Residues. <i>Computer Aided Chemical Engineering</i> , 2020 , 48, 985-990	0.6	2
20	Supply Chain Optimisation of Nipa-based bioethanol industry in Thailand. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 913-918	0.6	2
19	Model-based decision-support for waste-to-energy pathways in New South Wales, Australia. <i>Computer Aided Chemical Engineering</i> , 2019 , 1765-1770	0.6	2
18	Hydrogen consumption capacity assessment and its inhibition in the dry anaerobic digestion process from food waste. <i>Journal of Renewable and Sustainable Energy</i> , 2018 , 10, 053104	2.5	2
17	Optimising diets to reach absolute planetary environmental sustainability through consumers. <i>Sustainable Production and Consumption</i> , 2021 , 28, 877-892	8.2	2
16	Industrial production of microbial protein products Current Opinion in Biotechnology, 2022, 75, 102707	11.4	2
15	Optimal design of urban energy systems with demand side management and distributed generation. <i>Computer Aided Chemical Engineering</i> , 2017 , 2371-2376	0.6	1
14	Bringing Non-energy Systems into a Bioenergy Value Chain Optimization Framework. <i>Computer Aided Chemical Engineering</i> , 2015 , 37, 2351-2356	0.6	1

13	LCA Case Studies of Starch-Based Foam. Springer Theses, 2012, 153-220	0.1	1
12	Comment on "Sustainability metrics: life cycle assessment and green design in polymers". <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	1
11	Reducing indoor relative humidity can improve the circulation and cardiorespiratory health of older people in a cold environment: A field trial conducted in Chongqing, China <i>Science of the Total Environment</i> , 2021 , 817, 152695	10.2	1
10	Carbon Arbitrage with Stationary Batteries in the City of London. <i>Computer Aided Chemical Engineering</i> , 2017 , 529-534	0.6	1
9	Investigation on free-surface vortices within a closed pump intake under different pressure conditions using stereo PIV. <i>Journal of Nuclear Science and Technology</i> , 2021 , 58, 241-251	1	1
8	High-solids fermentation of food wastes for biogas recovery by using horizontal anaerobic reactor. Journal of Renewable and Sustainable Energy, 2018 , 10, 043106	2.5	1
7	Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress. <i>Processes</i> , 2021 , 9, 1211	2.9	1
6	Linkage of community composition and function over short response time in anaerobic digestion systems with food fermentation wastewater. <i>IScience</i> , 2021 , 24, 102958	6.1	1
5	Stochastic optimisation of organic waste-to-resource value chain. <i>Environmental Pollution</i> , 2021 , 273, 116435	9.3	0
4	LCA of WBF Products Over Whole Life Cycles. <i>Springer Theses</i> , 2012 , 265-319	0.1	
3	General Discussion and Conclusions. <i>Springer Theses</i> , 2012 , 345-356	0.1	
2	Process Systems Design Framework for Resource Recovery from Wastewater. <i>Computer Aided Chemical Engineering</i> , 2020 , 1039-1044	0.6	
1	Development of Systems Modelling Framework for Waste-to-Resource Transformation. <i>Computer Aided Chemical Engineering</i> , 2020 , 48, 1597-1602	0.6	