
Graciela Arbilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1308571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Concentrations in Urban Areas Impacted by Chemical and Petrochemical Industrial Emissions. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 204-211.	1.3	14
2	Fine Particulate Matter: Brazilian Legislation in the Light of the World Health Organization Guidelines. Revista Virtual De Quimica, 2022, 14, 359-371.	0.1	1
3	An analysis of speciated hydrocarbons in hydrous ethanol (H100) and ethanol-gasoline blend (E22) for vehicle exhaust emissions. Atmospheric Environment, 2022, 285, 119248.	1.9	2
4	Determination of size-segregated polycyclic aromatic hydrocarbon and its nitro and alkyl analogs in emissions from diesel-biodiesel blends. Fuel, 2021, 283, 118912.	3.4	8
5	Hydrocarbon emissions in flex fuel vehicles using ethanol: Preliminary results using a method implemented in Brazil. Fuel, 2021, 287, 119506.	3.4	10
6	Using mobility restriction experience for urban air quality management. Atmospheric Pollution Research, 2021, 12, 101119.	1.8	7
7	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	4.8	126
8	Online Chemistry Education Challenges for Rio de Janeiro Students during the COVID-19 Pandemic. Journal of Chemical Education, 2020, 97, 3396-3399.	1.1	20
9	The Impact of COVID-19 Partial Lockdown on Primary Pollutant Concentrations in the Atmosphere of Rio de Janeiro and São Paulo Megacities (Brazil). Bulletin of Environmental Contamination and Toxicology, 2020, 105, 2-8.	1.3	54
10	Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Science of the Total Environment, 2020, 737, 139765.	3.9	131
11	Impact of the Petrochemical Complex on the Air Quality of an Urban Area in the City of Rio de Janeiro, Brazil. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 438-443.	1.3	6
12	A reactivity analysis of volatile organic compounds in a Rio de Janeiro urban area impacted by vehicular and industrial emissions. Atmospheric Pollution Research, 2020, 11, 1018-1027.	1.8	15
13	Understanding high tropospheric ozone episodes in Bangu, Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, 2020, 192, 156.	1.3	10
14	The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of the Total Environment, 2020, 729, 139085.	3.9	457
15	Preliminary Study of Ambiente Levels and Exposure to BTEX in the Rio de Janeiro Olympic Metropolitan Region, Brazil. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 786-791.	1.3	8
16	The COVID-19 Pandemic: Living in the Anthropocene. Revista Virtual De Quimica, 2020, 12, 901-912.	0.1	6
17	COVID-19: challenges for a new epoch. Revista Da Sociedade Brasileira De Medicina Tropical, 2020, 53, e20200270.	0.4	2
18	Why did ozone levels remain high in Rio de Janeiro during the Brazilian truck driver strike?. Atmospheric Pollution Research, 2019, 10, 2018-2029.	1.8	13

#	Article	IF	CITATIONS
19	Levels of Volatile Carbonyl Compounds in the Atlantic Rainforest, in the City of Rio de Janeiro. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 757-762.	1.3	9
20	Main Greenhouse Gases levels in the largest secondary urban forest in the world. Atmospheric Pollution Research, 2019, 10, 564-570.	1.8	6
21	MODELOS FOTOQUÃMICOS SIMPLES COMO FERRAMENTA PARA O GERENCIAMENTO DA QUALIDADE DO AR. Quimica Nova, 2019, , .	0.3	1
22	Isoprene Emissions and Ozone Formation in Urban Conditions: A Case Study in the City of Rio de Janeiro. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 184-188.	1.3	12
23	Polycyclic aromatic hydrocarbon patterns in the city of Rio de Janeiro. Air Quality, Atmosphere and Health, 2018, 11, 581-590.	1.5	7
24	A minimum set of ozone precursor volatile organic compounds in an urban environment. Atmospheric Pollution Research, 2018, 9, 369-378.	1.8	23
25	Air Quality in the Maracan $\tilde{A} \pm$ and Deodoro Zones During the Rio 2016 Olympic Games. Journal of the Brazilian Chemical Society, 2018, , .	0.6	1
26	The new Meghalayan Age: What does it Imply for the Anthropocene Age?. Revista Virtual De Quimica, 2018, 10, 1648-1658.	0.1	4
27	Simulation of Pollutant Trajectories in Natural and Anthropogenic Events. Revista Virtual De Quimica, 2018, 10, 1828-1848.	0.1	1
28	Tijuca Forest: An Urban Forest in the Anthropocene. Revista Virtual De Quimica, 2018, 10, 1758-1791.	0.1	2
29	Urbanization and the Challenges in the Characterization of Air Quality. Revista Virtual De Quimica, 2018, 10, 1898-1914.	0.1	0
30	Anthropocene: The Challenges for a New World. Revista Virtual De Quimica, 2018, 10, 1619-1647.	0.1	5
31	Efeitos da gestão de mobilidade urbana para os Jogos OlÃmpicos sobre a qualidade do ar na região central da cidade do Rio de Janeiro. Urbe, 2018, 10, 129-142.	0.3	0
32	An Analytical Investigation of Ozone Episodes in Bangu, Rio de Janeiro. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 632-637.	1.3	9
33	Chemical characterization of organosulfates from the hydroxyl radical-initiated oxidation and ozonolysis of cis-3-hexen-1-ol. Atmospheric Environment, 2017, 162, 141-151.	1.9	17
34	Air Quality Indexes in the City of Rio de Janeiro During the 2016 Olympic and Paralympic Games. Journal of the Brazilian Chemical Society, 2017, , .	0.6	2
35	Speciation Analysis of Ozone Precursor Volatile Organic Compounds in the Air Basins of the Rio de Janeiro Metropolitan Area. Revista Virtual De Quimica, 2017, 9, 1887-1909.	0.1	3
36	Determination of Greenhouse Gases in Five Capitals in Different Brazilian Biomes. Revista Virtual De Quimica, 2017, 9, 2032-2051.	0.1	3

#	Article	IF	CITATIONS
37	lsoprene, benzene and toluene levels at the major landmarks of Rio de Janeiro during the 2014 FIFA World Cup. Atmosfera, 2016, 29, 197-207.	0.3	3
38	Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 781-785.	1.3	11
39	Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: A Preliminary Study. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 653-658.	1.3	14
40	Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 8714-8722.	1.3	6
41	Comparative Kinetics of the 3-Buten-1-ol and 1-Butene Reactions with OH Radicals: A Density Functional Theory/RRKM Investigation. Journal of Physical Chemistry A, 2015, 119, 3171-3180.	1.1	10
42	Determination of CO ₂ , CH ₄ and N ₂ O: a Case Study for the City of Rio de Janeiro Using a New Sampling Method. Journal of the Brazilian Chemical Society, 2015, , .	0.6	1
43	Trace Metals in PM10 and PM2.5 Samples Collected in a Highly Industrialized Chemical/Petrochemical Area and Its Urbanized Surroundings. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 590-595.	1.3	16
44	PM2.5-Bound Polycyclic Aromatic Hydrocarbons in an Area of Rio de Janeiro, Brazil Impacted by Emissions of Light-Duty Vehicles Fueled by Ethanol-Blended Gasoline. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 781-786.	1.3	11
45	Theoretical calculations of the kinetics of the OH reaction with 2-methyl-2-propen-1-ol and its alkene analogue. RSC Advances, 2014, 4, 20830-20840.	1.7	8
46	Theoretical study of Δ-3-(+)-carene oxidation. Physical Chemistry Chemical Physics, 2014, 16, 19376-19385.	1.3	12
47	Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust. Atmospheric Environment, 2014, 96, 107-116.	1.9	43
48	Characterization of polycyclic aromatic hydrocarbon levels in the vicinity of a petrochemical complex located in a densely populated area of the Rio de Janeiro, Brazil. Atmospheric Pollution Research, 2014, 5, 87-95.	1.8	15
49	The impact of BTEX emissions from gas stations into the atmosphere. Atmospheric Pollution Research, 2012, 3, 163-169.	1.8	109
50	Trace metals in the urban aerosols of Rio de Janeiro city. Journal of the Brazilian Chemical Society, 2012, , .	0.6	7
51	Kinetics and Thermodynamics of Limonene Ozonolysis. Journal of Physical Chemistry A, 2011, 115, 10911-10919.	1.1	33
52	Carbonyl Oxides Reactions from Geraniol- <i>trans</i> -(3,7-dimethylocta-2,6-dien-1-ol), 6-Methyl-5-hepten-2-one, and 6-Hydroxy-4-methyl-4-hexenal Ozonolysis: Kinetics and Mechanisms. Journal of Physical Chemistry A, 2011, 115, 7709-7721.	1.1	6
53	Volatile Organic Compounds in a Residential and Commercial Urban Area with a Diesel, Compressed Natural Gas and Oxygenated Gasoline Vehicular Fleet. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 175-179.	1.3	4
54	Comparative Study of Automotive, Aircraft and Biogenic Emissions of Aldehydes and Aromatic Compounds. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 180-184.	1.3	7

#	Article	IF	CITATIONS
55	Evolution of Particulate Matter and Associated Metal Levels in the Urban Area of Rio de Janeiro, Brazil. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 315-318.	1.3	7
56	Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area – Brazil. Atmospheric Environment, 2010, 44, 2302-2308.	1.9	59
57	Formaldehyde and acetaldehyde concentrations in the idle and taxiway areas of an urban airport. Journal of the Brazilian Chemical Society, 2010, 21, 481-488.	0.6	2
58	Pattern of volatile aldehydes and aromatic hydrocarbons in the largest urban rainforest in the Americas. Chemosphere, 2010, 79, 1064-1069.	4.2	25
59	Theoretical Study of the Addition of OH Radicals to <i>trans</i> -Geraniol-(3,7-dimethylocta-2,6-dien-1-ol), 6-Methyl-5-hepten-2-one, and 6-Hydroxy-4-methyl-4-hexenal. Journal of Physical Chemistry A, 2010, 114, 5468-5477.	1.1	4
60	Concentration of airbone trace metals in a bus station with a high heavy-duty diesel fraction. Journal of the Brazilian Chemical Society, 2009, 20, 1343-1350.	0.6	13
61	Particle-associated polycyclic aromatic hydrocarbons in a suburban region of Rio de Janeiro, Brazil, with industrial and traffic emissions. Journal of the Brazilian Chemical Society, 2009, 20, 518-529.	0.6	5
62	Particle-associated polycyclic aromatic hydrocarbons and their dry deposition fluxes from a bus-station in the Rio de Janeiro metropolitan area, Brazil. Journal of the Brazilian Chemical Society, 2009, 20, .	0.6	11
63	Evaluation of levels, sources and distribution of toxic elements in PM10 in a suburban industrial region, Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, 2008, 139, 49-59.	1.3	52
64	Theoretical investigation of the gas phase oxidation mechanism of dimethyl sulfoxide by OH radical. Computational and Theoretical Chemistry, 2008, 851, 1-14.	1.5	10
65	Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2008, 42, 769-775.	1.9	183
66	Mercaptans emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2008, 42, 6721-6725.	1.9	22
67	Oxidation mechanism of dimethyl sulfoxide (DMSO) by OH radical in liquid phase. Physical Chemistry Chemical Physics, 2008, 10, 6867.	1.3	24
68	Ozonolysis of Geraniol-trans, 6-Methyl-5-hepten-2-one, and 6-Hydroxy-4-methyl-4-hexenal: Kinetics and Mechanisms. Journal of Physical Chemistry A, 2008, 112, 6636-6645.	1.1	12
69	Theoretical Investigation on the Stability of Ionic Formic Acid Clusters. Journal of Physical Chemistry A, 2008, 112, 13382-13392.	1.1	14
70	Principais carbonilas no ar de locais públicos no Rio de Janeiro. Quimica Nova, 2008, 31, 249-253.	0.3	4
71	Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area. Chemosphere, 2007, 67, 2096-2103.	4.2	57
72	A two-year monitoring program of aromatic hydrocarbons in Rio de Janeiro downtown area. Journal of the Brazilian Chemical Society, 2007, 18, 539-543.	0.6	15

#	Article	IF	CITATIONS
73	Spatial distribution of polycyclic aromatic hydrocarbons in Terminalia catappa L. (Combretaceae) bark from a selected heavy road traffic area of Rio de Janeiro City, Brazil. Journal of Hazardous Materials, 2007, 142, 389-396.	6.5	19
74	Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil. Atmospheric Environment, 2007, 41, 7837-7850.	1.9	74
75	Volatile Aromatic Compounds in a Light-Duty Vehicle Tunnel in Rio de Janeiro, Brazil. Bulletin of Environmental Contamination and Toxicology, 2007, 78, 304-307.	1.3	8
76	Exposure to Volatile Organic Compounds in an Ethanol and Gasoline Service Station. Bulletin of Environmental Contamination and Toxicology, 2007, 79, 237-241.	1.3	27
77	Polycyclic Aromatic Hydrocarbons and their Molecular Diagnostic Ratios in Airborne Particles (PM10) Collected in Rio de Janeiro, Brazil. Water, Air, and Soil Pollution, 2007, 179, 79-92.	1.1	16
78	Experimental and theorical study of the air quality in a suburban industrial-residential area in Rio de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 2007, 18, 342-351.	0.6	10
79	Theoretical study of fluorination reaction by diethylaminosulfur trifluoride (DAST). Computational and Theoretical Chemistry, 2006, 761, 73-81.	1.5	11
80	Characterization of Airborne Trace Metal Distribution in Baixada Fluminense, Rio de Janeiro, Brazil, by Operational Speciation. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 119-125.	1.3	3
81	Particulate Matter and Associated Metal Levels in a Conservation Area in the Remaining Tropical Forest of Mata AtlŢntica, Brazil. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 651-657.	1.3	2
82	Concentration and Emission Sources of Airborne Metals in Particulate Matter in the Industrial District of Médio ParaÃba, State of Rio de Janeiro, Brazil. Archives of Environmental Contamination and Toxicology, 2006, 51, 485-493.	2.1	12
83	Aromatic hydrocarbons emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2006, 40, 6821-6826.	1.9	198
84	Evaluation of levels, sources and distribution of airborne trace metals in seven districts of the Baixada Fluminense, Rio de Janeiro, Brazil. Atmospheric Environment, 2005, 39, 3503-3512.	1.9	21
85	Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles. Atmospheric Environment, 2005, 39, 4513-4518.	1.9	47
86	Assessment of the Concentrations and Emission Sources of Airborne Metals in Particulate Matter in Seven Districts of Baixada Fluminense, Rio de Janeiro, Brazil. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 997-1003.	1.3	1
87	PAHs in Diurnal and Nocturnal Samples of Total Suspended Particulate in a Highly Trafficked Area of Rio de Janeiro City, Brazil. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 1004-1011.	1.3	6
88	Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmospheric Environment, 2004, 38, 321-331.	1.9	102
89	Aromatic Volatile Organic Compounds Emissions in a Tire Recapping Unit. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 255-260.	1.3	1
90	Metals in Airborne Particulate Matter in Downtown Rio de Janeiro, Brazil. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 916-22.	1.3	24

#	Article	IF	CITATIONS
91	Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil. Atmospheric Environment, 2003, 37, 23-29.	1.9	85
92	Computer modeling study of ethanol and aldheyde reactivities in Rio de Janeiro urban air. Atmospheric Environment, 2003, 37, 1715-1722.	1.9	22
93	Ozone Air Quality Modeling. A Case Study: A Heavily Vehicle Impacted Urban Avenue in Rio de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 2002, 13, 308-317.	0.6	15
94	Unimolecular reactions on formaldehyde S0 PES. Computational and Theoretical Chemistry, 2002, 580, 147-160.	1.5	19
95	Polycyclic Aromatic Hydrocarbons in Total Suspended Particulate of Niterói, RJ, Brazil: A Comparison of Summer and Winter Samples. Bulletin of Environmental Contamination and Toxicology, 2002, 69, 173-180.	1.3	14
96	Preliminary Comparison of PAH in Total Suspended Particulate Samples Taken at Niterói and Rio de Janeiro Cities, Brazil. Bulletin of Environmental Contamination and Toxicology, 2001, 66, 36-43.	1.3	11
97	Theoretical study and rate constants for the unimolecular isomerization of YONO (Y=F, Cl and Br). Computational and Theoretical Chemistry, 2001, 539, 223-232.	1.5	11
98	Kinetic analysis of the chemical processes in the decomposition of gaseous dielectrics by a non-equilibrium plasma - part 1: CF4 and CF4/O2. Journal of the Brazilian Chemical Society, 2000, 11, 121.	0.6	7
99	Avaliação da contaminação humana por hidrocarbonetos policÃclicos aromáticos (HPAs) e seus derivados nitrados (NHPAs): uma revisão metodológica. Quimica Nova, 2000, 23, 765-773.	0.3	96
100	Theoretical Study of the CF2CH2 → HF + CF⋮CH Reaction. Journal of Physical Chemistry A, 2000, 104, 9535-9541.	1.1	4
101	Reaction Coordinate and Rate Constants for Nitrous Acid cisâ^trans Isomerization. Journal of Physical Chemistry A, 2000, 104, 10895-10900.	1.1	5
102	Simulation of Air Pollution from Mobile Source Emissions in the City of Rio de Janeiro. Journal of the Brazilian Chemical Society, 1999, 10, 203-208.	0.6	9
103	Kinetic analysis of the gas-phase reactions of methacrolein with the OH radical in the presence of NOx. Journal of the Brazilian Chemical Society, 1999, 10, 483.	0.6	3
104	Otimização de um mecanismo fotoquÃmico para a simulação da atmosfera urbana brasileira. Quimica Nova, 1999, 22, 790-800.	0.3	6
105	Unimolecular Decomposition of Formaldehyde: H2CO → H2+ CO. Part I: Ab Initio Reaction Path and Variational Transition State Rate Constants. Journal of Physical Chemistry A, 1998, 102, 10805-10812.	1.1	18
106	Modeling and Separation of Rare Earth Elements by Countercurrent Electromigration: A New Separation Column. Separation Science and Technology, 1998, 33, 1551-1565.	1.3	2
107	Cinética não-isotérmica na análise térmica de sólidos. Quimica Nova, 1998, 21, 263-266.	0.3	0
108	Kinetic Analysis of the Gas-Phase Reactions of Methyl Tert-Butyl Ether with the OH Radical in the Presence of NOx. Journal of the Brazilian Chemical Society, 1998, 9, 539-550.	0.6	1

#	Article	IF	CITATIONS
109	Kinetic Analysis of the Gas-Phase Reactions of Methyl Vinyl Ketone with the OH Radical in the Presence of NOx. Journal of the Brazilian Chemical Society, 1998, 9, 551-562.	0.6	0
110	Simulação da QuÃmica da Atmosfera PoluÃda por Automóveis Movidos a Ãlcool. Quimica Nova, 1997, 20, 252-260.	0.3	5
111	Kinetic Modeling of the Photodecomposition of Ketene. Journal of the Brazilian Chemical Society, 1993, 4, 165-171.	0.6	0
112	Collisional Energy Transfer of Highly Excited Polyatomic Molecules. A Statistical Point of View. Journal of the Brazilian Chemical Society, 1993, 4, 113-115.	0.6	0
113	The unimolecular decomposition and isomerization of chemically activated 1-methyl-2,2,3,3-tetrafluorocyclopropane. International Journal of Chemical Kinetics, 1992, 24, 619-629.	1.0	1
114	Photodecomposition of ketene in the presence of a continuous electric field. Chemical Physics Letters, 1991, 187, 613-618.	1.2	1
115	Multistep collisional deactivation of highly vibrationally excited 1,1,2-trifluoro-2-(trifluoromethyl)cyclopropane. The Journal of Physical Chemistry, 1990, 94, 8140-8144.	2.9	3
116	Electric field effect on the chemical activation processes of 1,1,2,2-tetrafluorocyclopropane. The Journal of Physical Chemistry, 1990, 94, 3812-3815.	2.9	2
117	Decomposition of 1,1,2,2-tetrafluorocyclopropane. Arrhenius parameters and their influence on the chemical activation results. International Journal of Chemical Kinetics, 1989, 21, 1003-1014.	1.0	6
118	Vibrational energy-transfer probabilities of highly excited 1,1,2,2-tetrafluorocyclopropane. The Journal of Physical Chemistry, 1984, 88, 5221-5225.	2.9	4
119	Multistep collisional deactivation of highly vibrationally excited 1,1,2,2-tetrafluorocyclopropane. The Journal of Physical Chemistry, 1983, 87, 3906-3911.	2.9	11
120	Rate Coefficient for the Reaction of Cl Atoms with cis-3-Hexene at 296 ${\rm \hat{A}}\pm$ 2 K. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
121	Estudo da formação de ozônio em câmara de reação por motociclos flex fuel. , 0, , .		0
122	FATORES DE EMISSÃO DE COMPOSTOS CARBONÃLICOS MEDIDOS EM UM TÊNEL DO RIO DE JANEIRO, BRASI EM CONDIÇÕES REAIS DE DIRIGIBILIDADE. Quimica Nova, 0, , .	L, _{0.3}	2
123	The Updated Brazilian National Air Quality Standards: A Critical Review. Journal of the Brazilian Chemical Society, 0, , .	0.6	9
124	Speciated hydrocarbon analysis in exhaust emissions of flex fuel vehicles. , 0, , .		4
125	Evaluation of Pedagogical Strategies used in the State of Rio de Janeiro for Teaching Chemistry, Physics and Biology in High School During the First Year of the COVID-19 Pandemic. Revista Virtual De Quimica, 0, , .	0.1	1
126	Avaliação da eficiência do método TO-15 para determinação de compostos orgânicos voláteis em condições tÃpicas de ambiente urbano. Quimica Nova, 0, , .	0.3	0

#	Article	IF	CITATIONS
127	RADIONUCLÃĐEOS COMO MARCADORES DE UM NOVO TEMPO: O ANTROPOCENO. Quimica Nova, 0, , .	0.3	1
128	Evaluation of the Generation of Technofossils by Different Coffee Brewing Methods During COVID-19 Pandemic. Revista Virtual De Quimica, 0, , .	0.1	0