Jia-Fu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1308450/publications.pdf

Version: 2024-02-01

		516710	580821
56	690	16	25
papers	citations	h-index	g-index
56	56	56	645
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Physical Review E, 2001, 63, 021907.	2.1	97
2	Frequency sensitivity in weak signal detection. Physical Review E, 1999, 59, 3453-3460.	2.1	56
3	KTIO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism. Nanoscale, 2019, 11, 1131-1139.	5.6	50
4	Nb2SiTe4 and Nb2GeTe4: Unexplored 2D Ternary Layered Tellurides with High Stability, Narrow Band Gap and High Electron Mobility. Journal of Electronic Materials, 2020, 49, 959-968.	2.2	39
5	Monolayer Ti ₂ C MXene: manipulating magnetic properties and electronic structures by an electric field. Physical Chemistry Chemical Physics, 2020, 22, 11266-11272.	2.8	38
6	Gallium Thiophosphate: An Emerging Bidirectional Auxetic Two-Dimensional Crystal with Wide Direct Band Gap. Journal of Physical Chemistry Letters, 2019, 10, 4455-4462.	4.6	35
7	Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Applied Surface Science, 2018, 436, 919-926.	6.1	33
8	TlP ₅ : an unexplored direct band gap 2D semiconductor with ultra-high carrier mobility. Journal of Materials Chemistry C, 2019, 7, 639-644.	5. 5	30
9	Pt ₅ Se ₄ Monolayer: A Highly Efficient Electrocatalyst toward Hydrogen and Oxygen Electrode Reactions. ACS Applied Materials & Interfaces, 2020, 12, 13896-13903.	8.0	26
10	Giant magnetic entropy change in gadolinium orthoferrite near liquid hydrogen temperature. Journal of Alloys and Compounds, 2018, 739, 897-900.	5 . 5	21
11	A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios. Nanoscale, 2020, 12, 14150-14159.	5.6	21
12	Giant magnetocaloric effect in the antiferromagnet GdScO3 single crystal. Journal of Alloys and Compounds, 2019, 803, 992-997.	5 . 5	20
13	Planar penta-transition metal phosphide and arsenide as narrow-gap semiconductors with ultrahigh carrier mobility. Journal of Materials Science, 2019, 54, 7035-7047.	3.7	20
14	Prediction of new group IV-V-VI monolayer semiconductors based on first principle calculation. Computational Materials Science, 2017, 135, 160-164.	3.0	19
15	First-principle study on honeycomb fluorated-InTe monolayer with large Rashba spin splitting and direct bandgap. Applied Surface Science, 2019, 471, 18-22.	6.1	19
16	Surface regulated arsenenes as Dirac materials: From density functional calculations. Applied Surface Science, 2017, 394, 625-629.	6.1	17
17	ELECTRONIC STRUCTURES AND THE STABILITY OF MgO SURFACE: DENSITY FUNCTIONAL STUDY. Surface Review and Letters, 2015, 22, 1550037.	1.1	15
18	First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1302-1308.	4.9	13

#	Article	IF	CITATIONS
19	A large magnetocaloric effect of GdCoO3â^î^ê epitaxial thin films prepared by a polymer assisted spin-coating method. Journal of Materials Chemistry C, 2019, 7, 14970-14976.	5. 5	13
20	18-Electron half-Heusler compound Ti _{0.75} NiSb with intrinsic Ti vacancies as a promising thermoelectric material. Journal of Materials Chemistry A, 2022, 10, 9655-9669.	10.3	12
21	Synergic Effect in a New Electrocatalyst Ni ₂ SbTe ₂ for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 3671-3680.	3.1	11
22	Two-dimensional V-shaped PdI2: Auxetic semiconductor with ultralow lattice thermal conductivity and ultrafast alkali ion mobility. Applied Surface Science, 2022, 601, 154176.	6.1	10
23	Frequency characteristics and intrinsic oscillations in a neuronal network. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 256, 181-187.	2.1	7
24	Slot-waveguide-assisted temperature-independent Mach–Zehnder interferometer based optical filter. Journal of Modern Optics, 2010, 57, 545-551.	1.3	7
25	Tunable Rashba spin splitting in two-dimensional graphene/As-I heterostructures. Applied Surface Science, 2018, 427, 10-14.	6.1	7
26	Designing stable 2D materials solely from VIA elements. Applied Physics Letters, 2021, 119, .	3.3	6
27	Synthesis and characterization of hybrid latexes from soybean oil-based polyurethane and poly(2,2,2-trifluoroethyl methacrylate). Fibers and Polymers, 2014, 15, 208-214.	2.1	5
28	Prediction of two-dimensional M2As (MÂ=ÂMn, Fe) with high Curie temperature and large perpendicular magnetic anisotropy. Computational Materials Science, 2021, 200, 110838.	3.0	5
29	Realizing high thermoelectric performance in GeTe by defect engineering on cation sites. Journal of Materials Chemistry C, 2022, 10, 9052-9061.	5.5	5
30	Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus. Pramana - Journal of Physics, 2008, 70, 183-190.	1.8	4
31	Frequency Selectivity Behaviour in the Auditory Midbrain: Implications of Model Study. Chinese Physics Letters, 2006, 23, 3380-3383.	3.3	3
32	Directed true self-avoiding Levy flights. Journal of Physics A, 1991, 24, 4843-4851.	1.6	2
33	Ti-doped Sn2Se3 phase change material for improved thermal stability. Materials Letters, 2019, 254, 186-189.	2.6	2
34	Two novel triangular borophenes B3H and B6O: first-principles prediction. Nanotechnology, 2019, 30, 495201.	2.6	2
35	The feasibility analysis of growing the modified borophene on substrates: First-principles calculation. Applied Surface Science, 2020, 507, 144154.	6.1	2
36	Tellurium vacancy in two-dimensional Si2Te3 for resistive random-access memory. Journal of Solid State Chemistry, 2021, 303, 122448.	2.9	2

#	Article	IF	CITATIONS
37	Intrinsic Rhythmic Fluctuation of Membrane Voltage Evoked by Membrane Noise in the Hodgkin-Huxley System. Acta Physica Polonica A, 2010, 117, 435-438.	0.5	2
38	Effects of surface regulation on monolayers SbAs and BiSb. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 217101.	0.5	2
39	Effective modes investigation of transmitted and reflective heterocore optical fiber surface plasmon resonance sensors. Applied Optics, 2019, 58, 6975.	1.8	2
40	Negative differential resistance and unsaturated magnetoresistance effects based on avalanche breakdown. Journal of Physics Condensed Matter, 2020, 32, 305701.	1.8	2
41	The Critical Behavior of Partially Directed SAW on Sierpinski Carpets. Communications in Theoretical Physics, 1991, 16, 355-358.	2.5	1
42	SCALING LAWS OF REVERSIBLE AGGREGATION IN COMPACT CLUSTER SYSTEMS. International Journal of Modern Physics B, 2000, 14, 983-991.	2.0	1
43	First-Principle Study of the Electronic and Optical Properties of Ti Doped ZnS. Advanced Materials Research, 2012, 430-432, 173-176.	0.3	1
44	The tuning effect of the electric field on the physical properties of some typical wurtzite semiconductors. Modern Physics Letters B, 2017, 31, 1750310.	1.9	1
45	Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB ₄ sheet. Chinese Physics B, 2018, 27, 097304.	1.4	1
46	Improved phase change properties in layered ScxIn2â^'xSe3 for multilevel information storage. Journal Physics D: Applied Physics, 2020, 53, 285101.	2.8	1
47	Synthesis mechanism and magnetoresistance effect of millimeter-sized GeTe faceted crystals. Journal of Physics and Chemistry of Solids, 2022, 165, 110671.	4.0	1
48	Structural, Magnetic and Magnetocaloric Properties of DyCoO3 Nanoparticles. Journal of Low Temperature Physics, 2022, 208, 289-297.	1.4	1
49	Critical Exponents of Fully Directed Flights: A Laplacian Transformation Method. Communications in Theoretical Physics, 1992, 17, 235-238.	2.5	0
50	Exact Results for Fully Directed Flights is <i>s</i> -Dimensions. Communications in Theoretical Physics, 1994, 21, 397-402.	2.5	0
51	Analytical Results for the Critical Exponents of Fully Directed Levy Flights. Communications in Theoretical Physics, 1998, 29, 357-362.	2.5	0
52	Influence of temperature on neuronal excitability in cochlear nucleus. Indian Journal of Physics, 2010, 84, 309-317.	1.8	0
53	The I-V Measurement System for Solar Cells Based on MCU. Journal of Physics: Conference Series, 2011, 276, 012161.	0.4	0
54	Title is missing!. International Journal of Modern Physics B, 2000, 14, 983.	2.0	0

#	Article	IF	CITATIONS
55	Study on Non-uniform Transmission Line by Using Matlab Simulation. International Journal of Advancements in Computing Technology, 2012, 4, 567-576.	0.1	O
56	Memristive and magnetoresistance effects of SnSe ₂ . Wuli Xuebao/Acta Physica Sinica, 2020, 69, 117301.	0.5	0