
Yongfeng Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Nanomaterials for Optoelectric Conversion and Energy Storage. Journal of Nanomaterials, 2013, 2013, 1-2.	2.7	1,394
2	A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nature Photonics, 2015, 9, 233-238.	31.4	372
3	Integrated Polymer Solar Cell and Electrochemical Supercapacitor in a Flexible and Stable Fiber Format. Advanced Materials, 2014, 26, 466-470.	21.0	337
4	Selfâ€Healable Electrically Conducting Wires for Wearable Microelectronics. Angewandte Chemie - International Edition, 2014, 53, 9526-9531.	13.8	190
5	Photovoltaic Wire Derived from a Graphene Composite Fiber Achieving an 8.45 % Energy Conversion Efficiency. Angewandte Chemie - International Edition, 2013, 52, 7545-7548.	13.8	155
6	An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. Journal of Materials Chemistry A, 2013, 1, 954-958.	10.3	148
7	Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon, 2019, 150, 311-318.	10.3	112
8	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	10.3	103
9	High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps. Journal of Power Sources, 2019, 424, 1-7.	7.8	84
10	An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. Journal of Materials Chemistry A, 2017, 5, 925-930.	10.3	78
11	Coreâ€Sheath Carbon Nanostructured Fibers for Efficient Wireâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 1694-1698.	21.0	76
12	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	11.3	74
13	Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets. Journal of Materials Chemistry C, 2015, 3, 5621-5624.	5.5	69
14	Wet chemical synthesis of Bi2S3 nanorods for efficient photocatalysis. Materials Letters, 2013, 105, 12-15.	2.6	55
15	Monodisperse mesoporous TiO2 microspheres for dye sensitized solar cells. Nano Energy, 2016, 26, 16-25.	16.0	49
16	A novel fabrication of a well distributed and aligned carbon nanotube film electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 16833.	6.7	45
17	<i>In situ</i> synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors. Nanoscale, 2020, 12, 17738-17745.	5.6	43
18	Nickel-cobalt layered double hydroxide nanosheets anchored to the inner wall of wood carbon tracheids by nitrogen-doped atoms for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 608, 70-78.	9.4	40

YONGFENG LUO

#	Article	IF	CITATIONS
19	Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors. Carbon, 2022, 196, 532-539.	10.3	39
20	ZIF-67-derived Co@N-PC anchored on tracheid skeleton from sawdust with micro/nano composite structures for boosted methylene blue degradation. Separation and Purification Technology, 2021, 278, 119489.	7.9	35
21	Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves. Optics Communications, 2010, 283, 1784-1787.	2.1	30
22	Yolk–Shell Structured Nickel Cobalt Sulfide and Carbon Nanotube Composite for High-Performance Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 5342-5351.	5.1	25
23	Sophora-like Nickel–Cobalt Sulfide and Carbon Nanotube Composites in Carbonized Wood Slice Electrodes for All-Solid-State Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7400-7407.	5.1	25
24	Penetrated and aligned carbon nanotubes for counter electrodes of highly efficient dye-sensitized solar cells. Chemical Physics Letters, 2012, 549, 82-85.	2.6	20
25	Recent Progress in Flexible Fibrous Batteries. ChemElectroChem, 2018, 5, 3127-3137.	3.4	16
26	Exploring binding mechanisms of VEGFR2 with three drugs lenvatinib, sorafenib, and sunitinib by molecular dynamics simulation and free energy calculation. Chemical Biology and Drug Design, 2019, 93, 934-948.	3.2	15
27	Cobalt Hydroxide Nanosheets Grown on Carbon Nanotubes Anchored in Wood Carbon Scaffolding for High-Performance Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 18815-18823.	5.1	15
28	Fabrication of high-quality carbon nanotube fibers for optoelectronic applications. Solar Energy Materials and Solar Cells, 2012, 97, 78-82.	6.2	14
29	Coupling of localized surface plasmon modes in compound structure with metallic nanoparticle and nanohole arrays. Journal of Applied Physics, 2010, 108, 093520.	2.5	13
30	Ballistic thermal transport in multi-terminal graphene junctions. Computational Materials Science, 2013, 77, 440-444.	3.0	11
31	The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storage. Journal of Nanomaterials, 2014, 2014, 1-13.	2.7	11
32	Controllable One-Dimensional Growth of Metal–Organic Frameworks Based on Uncarved Halloysite Nanotubes as High-Efficiency Solar-Fenton Catalysts. Journal of Physical Chemistry C, 2021, 125, 25565-25579.	3.1	11
33	Light and electrically responsive materials based on aligned carbon nanotubes. European Polymer Journal, 2016, 82, 290-299.	5.4	10
34	Theoretical investigation of temperature distribution uniformity in wood during microwave drying in three-port feeding circular resonant cavity. Drying Technology, 2017, 35, 409-416.	3.1	10
35	Light transmission through metal films perforated with arrays of asymmetric cross-shaped hole. Solid State Communications, 2010, 150, 104-108.	1.9	9
36	Light transmission through metallic slit with a bar. Solid State Communications, 2010, 150, 1283-1286.	1.9	9

YONGFENG LUO

#	Article	IF	CITATIONS
37	Switching freely between superluminal and subluminal light propagation in a monolayer MoS_2 nanoresonator. Optics Express, 2017, 25, 13567.	3.4	9
38	Synthesis of High-Quality Carbon Nanotube Arrays without the Assistance of Water. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	8
39	Amino Acid-Doped Polyaniline Nanotubes as Efficient Adsorbent for Wastewater Treatment. Journal of Chemistry, 2022, 2022, 1-12.	1.9	7
40	Directional excitation of surface plasmon polaritons in structure of subwavelength metallic holes. Optics Communications, 2012, 285, 182-185.	2.1	6
41	Plasmonic coupler based on the nanoslit with bump. Optics Communications, 2011, 284, 368-372.	2.1	5
42	Fabrication of Superhydrophobic Surfaces on Aluminum Alloy by Simple Chemical Etching Method. Advanced Materials Research, 0, 239-242, 2270-2273.	0.3	4
43	Ballistic thermal transport in quantum wire modulated with trapeziform quantum structures. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1065-1070.	2.7	3
44	Mathematical Simulation and Design of a Rectangular Cavity of Microwave Pretreatment Equipment Used for Wood Modification. BioResources, 2014, 10, .	1.0	3
45	Uniform Loading of Nickel Phosphide Nanoparticles in Hierarchical Carbonized Wood Channel for Efficient Electrocatalytic Hydrogen Evolution. Journal of Chemistry, 2020, 2020, 1-6.	1.9	3
46	Highly efficient blue light of femtosecond pulses by second-harmonic generation in periodically poled MgO:LiNbO3. Optics Communications, 2004, 238, 201-204.	2.1	2
47	Functional Nanomaterials for Optoelectric Conversion and Energy Storage 2014. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	2
48	The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage. Journal of Nanomaterials, 2014, 2014, 1-13.	2.7	2
49	Solar Cells: Coreâ€Sheath Carbon Nanostructured Fibers for Efficient Wireâ€Shaped Dyeâ€Sensitized Solar Cells (Adv. Mater. 11/2014). Advanced Materials, 2014, 26, 1791-1791.	21.0	2
50	Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	1
51	Theoretical Study of Wood Microwave Pretreatment in Rectangular Cavity for Fabricating Wood-Based Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	1
52	Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-4.	2.7	1
53	The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices. Chinese Physics Letters, 2010, 27, 016301.	3.3	0
54	Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nanocomposites. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	0

#	Article	IF	CITATIONS
55	Preparation and Characterization of Aligned Carbon Nanotube Fibers. Applied Mechanics and Materials, 0, 275-277, 1794-1797.	0.2	0
56	Acoustic phonon transport and thermal conductance in quantum waveguide with abrupt quantum junctions modulated with double T-shapedquantum structure. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 056805.	0.5	0