Andreas Bachmair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307783/publications.pdf

Version: 2024-02-01

27 1,279 15 26
papers citations h-index g-index

28 28 28 1772 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Transcriptome, metabolome and suppressor analysis reveal an essential role for the ubiquitin-proteasome system in seedling chloroplast development. BMC Plant Biology, 2022, 22, 183.	3.6	1
2	Cellular Control of Protein Turnover via the Modification of the Amino Terminus. International Journal of Molecular Sciences, 2021, 22, 3545.	4.1	8
3	A Yeast-Based Functional Assay to Study Plant N-Degron – N-Recognin Interactions. Frontiers in Plant Science, 2021, 12, 806129.	3.6	2
4	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	7.3	59
5	The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annual Review of Plant Biology, 2019, 70, 119-151.	18.7	158
6	SUMO chain formation relies on the amino-terminal region of SUMO-conjugating enzyme and has dedicated substrates in plants. Biochemical Journal, 2018, 475, 61-74.	3.7	10
7	Sumoylation and phosphorylation: hidden and overt links. Journal of Experimental Botany, 2018, 69, 4583-4590.	4.8	24
8	Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.	4.8	20
9	Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. Plant Journal, 2017, 91, 505-517.	5.7	25
10	<scp>SUMO</scp> ylation represses Sn <scp>RK</scp> 1 signaling in Arabidopsis. Plant Journal, 2016, 85, 120-133.	5.7	56
11	SUMO Chain Formation by Plant Enzymes. Methods in Molecular Biology, 2016, 1450, 97-105.	0.9	4
12	Seedling Germination: Seedlings Follow Sunshine andÂFresh Air. Current Biology, 2015, 25, R565-R566.	3.9	2
13	How cells coordinate waste removal through their major proteolytic pathways. Nature Cell Biology, 2015, 17, 841-842.	10.3	7
14	Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions. PLoS ONE, 2015, 10, e0136601.	2.5	27
15	Expression and Purification of the Arabidopsis E4 SUMO Ligases PIAL1 and PIAL2. Bio-protocol, 2015, 5, .	0.4	O
16	Ubiquitin Lys 63 chains – second-most abundant, but poorly understood in plants. Frontiers in Plant Science, 2014, 5, 15.	3.6	26
17	<i>Arabidopsis</i> PIAL1 and 2 Promote SUMO Chain Formation as E4-Type SUMO Ligases and Are Involved in Stress Responses and Sulfur Metabolism Â. Plant Cell, 2014, 26, 4547-4560.	6.6	73
18	Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 2014, 53, 369-379.	9.7	312

#	Article	IF	CITATION
19	Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signalling. Nature Communications, 2014, 5, 4687.	12.8	46
20	The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends in Cell Biology, 2014, 24, 603-611.	7.9	171
21	Small Ubiquitinâ€Like Modifier Conjugating Enzyme with Active Site Mutation Acts as Dominant Negative Inhibitor of SUMO Conjugation in <i>Arabidopsis</i> Sup>F. Journal of Integrative Plant Biology, 2013, 55, 75-82.	8.5	16
22	Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison. New Phytologist, 2012, 195, 23-31.	7.3	75
23	Deletion analysis of the 3′ long terminal repeat sequence of plant retrotransposon Tto1 identifies 125 base pairs redundancy as sufficient for first strand transfer. Virology, 2011, 412, 75-82.	2.4	1
24	Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta, 2011, 233, 63-73.	3.2	52
25	A synthetic biology approach allows inducible retrotransposition in whole plants. Systems and Synthetic Biology, 2010, 4, 133-138.	1.0	6
26	Substrates Related to Chromatin and to RNA-Dependent Processes Are Modified by Arabidopsis SUMO Isoforms That Differ in a Conserved Residue with Influence on Desumoylation \hat{A} \hat{A} . Plant Physiology, 2009, 149, 1529-1540.	4.8	91
27	Virus-like particle formation and translational start site choice of the plant retrotransposon Tto1. Virology, 2008, 373, 437-446.	2.4	6