
Richard P Corkish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive recycling of silicon photovoltaic modules incorporating organic solvent delamination – technical, environmental and economic analyses. Resources, Conservation and Recycling, 2021, 165, 105241.	5.3	50
2	Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries. Renewable and Sustainable Energy Reviews, 2021, 137, 110622.	8.2	23
3	Life Cycle Environmental Assessment of Different Solar Photovoltaic Technologies. , 2021, , 5-1-5-34.		3
4	An Environmental and Societal Analysis of the US Electrical Energy Industry Based on the Water–Energy Nexus. Energies, 2021, 14, 2633.	1.6	7
5	Major challenges and opportunities in silicon solar module recycling. Progress in Photovoltaics: Research and Applications, 2020, 28, 1077-1088.	4.4	82
6	Sustainable End of Life Management of Crystalline Silicon and Thin Film Solar Photovoltaic Waste: The Impact of Transportation. Applied Sciences (Switzerland), 2020, 10, 5465.	1.3	16
7	Life Cycle Assessment of tandem LSC-Si devices. Energy, 2019, 181, 1-10.	4.5	9
8	The genesis of the first specialist PV Bachelor of Engineering program—The educational legacy of Stuart Ross Wenham. Progress in Photovoltaics: Research and Applications, 2019, , .	4.4	0
9	Life Cycle Assessment of Two Experimental Recycling Processes for c-Si Solar Modules. , 2019, , .		Ο
10	A comparative life cycle assessment of chalcogenide/Si tandem solar modules. Energy, 2018, 145, 700-709.	4.5	26
11	Life Cycle Assessment on Hydrogenation Processes on Silicon Solar Modules. , 2018, , .		1
12	Comparative Life Cycle Assessment of End-of-Life Silicon Solar Photovoltaic Modules. Applied Sciences (Switzerland), 2018, 8, 1396.	1.3	76
13	Life cycle assessment on PERC solar modules. Solar Energy Materials and Solar Cells, 2018, 187, 154-159.	3.0	27
14	A life cycle assessment of perovskite/silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 679-695.	4.4	74
15	Undergraduate and Postgraduate Education in Renewable Energy. , 2017, , 81-92.		Ο
16	Point-of-use water disinfection using ultraviolet and visible light-emitting diodes. Science of the Total Environment, 2016, 553, 626-635.	3.9	93
17	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. Materials Research Society Symposia Proceedings, 2015, 1771, 33-44.	0.1	1
18	Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters. Science of the Total Environment, 2014, 493, 185-196.	3.9	71

RICHARD P CORKISH

#	Article	IF	CITATIONS
19	β-NaYF <inf>4</inf> :Er ³⁺ nanocrystal films as a spectral converter to improve photoconversion efficiency of crystalline silicon solar cells. , 2013, , .		Ο
20	The effect of electron range on electron beam induced current collection and a simple method to extract an electron range for any generation function. Ultramicroscopy, 2011, 111, 1343-1351.	0.8	1
21	New education opportunities and research activities at UNSW. Proceedings of SPIE, 2007, , .	0.8	Ο
22	Photoluminescence in crystalline silicon quantum wells. Journal of Applied Physics, 2007, 101, 024321.	1.1	15
23	Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512, 654-662.	0.8	542
24	Integrated Solar Photovoltaics for Buildings. Journal of Green Building, 2006, 1, 63-76.	0.4	9
25	Materials Engineering Education in Two New Engineering Degree Programs at the Centre for Photovoltaic Engineering. Materials Research Society Symposia Proceedings, 2005, 909, 1.	0.1	Ο
26	Clear quantum-confined luminescence from crystalline silicon/SiO2 single quantum wells. Applied Physics Letters, 2004, 84, 2286-2288.	1.5	47
27	Atomistic structure of SiO2â^•Siâ^•SiO2 quantum wells with an apparently crystalline silicon oxide. Journal of Applied Physics, 2004, 96, 3211-3216.	1.1	14
28	Thin semiconducting layers as active and passive emitters for thermophotonics and thermophotovoltaics. Solar Energy, 2004, 76, 251-254.	2.9	5
29	Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. Journal of Applied Physics, 2003, 94, 4930.	1.1	257
30	Very efficient light emission from bulk crystalline silicon. Applied Physics Letters, 2003, 82, 2996-2998.	1.5	151
31	Thin semiconducting layers and nanostructures as active and passive emitters for thermophotonics and thermophotovoltaics. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 91-95.	1.3	10
32	Limiting efficiency for a multi-band solar cell containing three and four bands. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 121-125.	1.3	60
33	Design trade-offs and rules for multiple energy level solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 136-141.	1.3	18
34	The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells?. Progress in Photovoltaics: Research and Applications, 2002, 10, 345-353.	4.4	62
35	Solar energy collection by antennas. Solar Energy, 2002, 73, 395-401.	2.9	141
36	Numerical simulation of electron-beam-induced current near a silicon grain boundary and impact of a p–n junction space charge region. Solar Energy Materials and Solar Cells, 2001, 65, 63-69.	3.0	5

RICHARD P CORKISH

#	Article	IF	CITATIONS
37	Detailed balance efficiency limits with quasi-Fermi level variations [QW solar cell]. IEEE Transactions on Electron Devices, 1999, 46, 1932-1939.	1.6	56
38	Quantitative interpretation of electron-beam-induced current grain boundary contrast profiles with application to silicon. Journal of Applied Physics, 1998, 84, 5473-5481.	1.1	27
39	Excitons in silicon diodes and solar cells: A threeâ€particle theory. Journal of Applied Physics, 1996, 79, 195-203.	1.1	41
40	Junction recombination current in abrupt junction diodes under forward bias. Journal of Applied Physics, 1996, 80, 3083-3090.	1.1	19
41	Band edge optical absorption in intrinsic silicon: Assessment of the indirect transition and disorder models. Journal of Applied Physics, 1993, 73, 3988-3996.	1.1	16
42	Some candidate materials for lattice-matched liquid-phase epitaxial growth on silicon. Solar Cells, 1991, 31, 537-548.	0.6	9
43	The use of conical tips to improve the impedance matching of cassegrain subreflectors. Microwave and Optical Technology Letters, 1990, 3, 310-313.	0.9	4
44	A survey of the effects of reflector surface distortions on sidelobe levels. IEEE Antennas and Propagation Magazine, 1990, 32, 6-11.	1.2	13
45	Recombination via discrete defect levels with application to semiconductor material characterisation. , 0, , .		0
46	Optical transitions from SiO/sub 2//crystalline Si/SiO/sub 2/ quantum wells. , 0, , .		0
47	Evidence for crystalline silicon oxide growth on thin silicon. , 0, , .		0
48	A Review of Recycling Processes for Photovoltaic Modules. , 0, , .		50
49	Life Cycle Assessment of Silicon-Based Tandem Solar Photovoltaics and their End-of-Life. Indonesian Journal of Life Cycle Assessment and Sustainability, 0, , .	0.0	2
50	Undergraduate and Postgraduate Education in Renewable Energy. Advances in Higher Education and Professional Development Book Series, 0, , 85-95.	0.1	0