Jeffrey Boone Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/130752/publications.pdf

Version: 2024-02-01

43 papers

2,090 citations

304602 22 h-index 42 g-index

43 all docs 43 docs citations

43 times ranked

1873 citing authors

#	Article	IF	CITATIONS
1	Downstream events initiated by expression of FSHD-associated DUX4: Studies of nucleocytoplasmic transport, \hat{l}^3 H2AX accumulation, and Bax/Bak-dependence. Biology Open, 2022, 11, .	0.6	7
2	Proximity ligation assay to detect DUX4 protein in FSHD1 muscle: a pilot study. BMC Research Notes, 2022, 15, 163.	0.6	4
3	Efficient system for upstream mRNA trans-splicing to generate covalent, head-to-tail, protein multimers. Scientific Reports, 2019, 9, 2274.	1.6	3
4	Functional domains of the FSHD-associated DUX4 protein. Biology Open, 2018, 7, .	0.6	24
5	Aberrant Caspase Activation in Laminin-α2-Deficient Human Myogenic Cells is Mediated by p53 and Sirtuin Activity. Journal of Neuromuscular Diseases, 2018, 5, 59-73.	1.1	5
6	Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skeletal Muscle, 2016, 6, 42.	1.9	17
7	Expression of FSHDâ€related DUX4â€FL alters proteostasis and induces TDPâ€43 aggregation. Annals of Clinical and Translational Neurology, 2015, 2, 151-166.	1.7	54
8	Immortalized myogenic cells from congenital muscular dystrophy type1A patients recapitulate aberrant caspase activation in pathogenesis: a new tool for MDC1A research. Skeletal Muscle, 2013, 3, 28.	1.9	8
9	A unique library of myogenic cells from facioscapulohumeral muscular dystrophy subjects and unaffected relatives: family, disease and cell function. European Journal of Human Genetics, 2012, 20, 404-410.	1.4	57
10	Peripheral nerve pathology, including aberrant Schwann cell differentiation, is ameliorated by doxycycline in a laminin-A2-deficient mouse model of congenital muscular dystrophy. Human Molecular Genetics, 2011, 20, 2662-2672.	1.4	15
11	Prdm1 (Blimp-1) and the Expression of Fast and Slow Myosin Heavy Chain Isoforms during Avian Myogenesis In Vitro. PLoS ONE, 2010, 5, e9951.	1.1	18
12	Pathology is alleviated by doxycycline in a lamininâ€Î±2–null model of congenital muscular dystrophy. Annals of Neurology, 2009, 65, 47-56.	2.8	74
13	Ku70 regulates Bax-mediated pathogenesis in laminin-Â2-deficient human muscle cells and mouse models of congenital muscular dystrophy. Human Molecular Genetics, 2009, 18, 4467-4477.	1.4	18
14	TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO Journal, 2006, 25, 5826-5839.	3 . 5	189
15	Diseased muscles that lack dystrophin or laminin-l±2 have altered compositions and proliferation of mononuclear cell populations. BMC Neurology, 2005, 5, 7.	0.8	23
16	Immortalization of mouse myogenic cells can occur without loss of p16INK4a, p19ARF, or p53 and is accelerated by inactivation of Bax. BMC Cell Biology, 2004, 5, 1.	3.0	22
17	Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy. Journal of Clinical Investigation, 2004, 114, 1635-1639.	3.9	103
18	Regeneration of Transgenic Skeletal Muscles with Altered Timing of Expression of the Basic Helix-Loop-Helix Muscle Regulatory Factor MRF4. American Journal of Pathology, 2003, 162, 1685-1691.	1.9	25

#	Article	IF	Citations
19	Disruption of the COP9 Signalosome Csn2 Subunit in Mice Causes Deficient Cell Proliferation, Accumulation of p53 and Cyclin E, and Early Embryonic Death. Molecular and Cellular Biology, 2003, 23, 6790-6797.	1.1	142
20	Does the Road to Muscle Rejuvenation Go Through Notch?. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 34pe-34.	0.9	4
21	Up-Regulation of MHC Class I Expression Accompanies but Is Not Required for Spontaneous Myopathy in Dysferlin-Deficient SJL/J Mice. American Journal of Pathology, 2002, 160, 833-839.	1.9	23
22	Pro- and Anti-apoptotic Members of the Bcl-2 Family in Skeletal Muscle: A Distinct Role for Bcl-2 in Later Stages of Myogenesis. Developmental Dynamics, 2001, 220, 18-26.	0.8	34
23	Bcl-2 Expression Identifies an Early Stage of Myogenesis and Promotes Clonal Expansion of Muscle Cells. Journal of Cell Biology, 1998, 142, 537-544.	2.3	86
24	6 Seeking Muscle Stem Cells. Current Topics in Developmental Biology, 1998, 43, 191-219.	1.0	90
25	MRF4 can substitute for myogenin during early stages of myogenesis. Developmental Dynamics, 1997, 209, 233-241.	0.8	49
26	MRF4 can substitute for myogenin during early stages of myogenesis. Developmental Dynamics, 1997, 209, 233-241.	0.8	1
27	Progress, problems, and prospects for gene therapy in muscle. Current Opinion in Rheumatology, 1996, 8, 539-543.	2.0	3
28	POU homeodomain genes and myogenesis. Genesis, 1996, 19, 108-118.	3.3	21
29	Acceleration of somitic myogenesis in embryos of myogenin promoter-MRF4 transgenic mice., 1996, 207, 382-394.		10
30	Isolation and Characterization of an Avian Slow Myosin Heavy Chain Gene Expressed during Embryonic Skeletal Muscle Fiber Formation. Journal of Biological Chemistry, 1996, 271, 17047-17056.	1.6	24
31	Gene therapy by and for muscle cells. Trends in Genetics, 1995, 11, 163-165.	2.9	20
32	Don't call us. Nature, 1994, 368, 93-93.	13.7	1
33	Myogenesis and the Intermediate Filament Protein, Nestin. Developmental Biology, 1994, 165, 216-228.	0.9	125
34	Cellular and molecular diversity in skeletal muscle development: News fromin vitro andin vivo. BioEssays, 1993, 15, 191-196.	1.2	41
35	Myoblast diversity in skeletal myogenesis: How much and to what end?. Cell, 1992, 69, 1-3.	13.5	269
36	Distinct myogenic programs of embryonic and fetal mouse muscle cells: Expression of the perinatal myosin heavy chain isoform in vitro. Developmental Biology, 1992, 149, 16-26.	0.9	48

#	Article	lF	CITATIONS
37	Myoblasts, myosins, MyoDs, and the diversification of muscle fibers. Neuromuscular Disorders, 1991, 1, 7-17.	0.3	34
38	Multiple cellular processes regulate expression of slow myosin heavy chain isoforms during avian myogenesis in vitro. Developmental Biology, 1989, 136, 393-404.	0.9	29
39	The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Developmental Biology, 1987, 123, 1-9.	0.9	236
40	What muscle cells know that nerves don't tell them. Trends in Neurosciences, 1987, 10, 325-329.	4.2	56
41	Acetylcholine receptors from Torpedo californica membrane vesicles are metabolized after fusion with cultured mammalian muscle cells. Brain Research, 1984, 295, 227-231.	1.1	1
42	Effects of cyanine dye membrane probes on cellular properties. Nature, 1978, 272, 83-84.	13.7	39
43	Membrane fluidity and chemotaxis: Effects of temperature and membrane lipid composition on the swimming behavior of Salmonella typhimurium and Escherichia coli. Journal of Molecular Biology, 1977, 111, 183-201.	2.0	38