Borong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307316/publications.pdf

Version: 2024-02-01

		1684188	1588992	
13	242	5	8	
papers	citations	h-index	g-index	
13	13	13	222	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Failure and Reliability Analysis of a SiC Power Module Based on Stress Comparison to a Si Device. IEEE Transactions on Device and Materials Reliability, 2017, 17, 727-737.	2.0	124
2	Changes and challenges of photovoltaic inverter with silicon carbide device. Renewable and Sustainable Energy Reviews, 2017, 78, 624-639.	16.4	25
3	Long-Term Reliability Evaluation of Power Modules With Low Amplitude Thermomechanical Stresses and Initial Defects. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 602-615.	5.4	24
4	Distributed Thermal Monitoring of Wind Turbine Power Electronic Modules Using FBG Sensing Technology. IEEE Sensors Journal, 2020, 20, 9886-9894.	4.7	23
5	Heat-Flux-Based Condition Monitoring of Multichip Power Modules Using a Two-Stage Neural Network. IEEE Transactions on Power Electronics, 2021, 36, 7489-7500.	7.9	14
6	Deep Learning Neural Networks for Heat-Flux Health Condition Monitoring Method of Multi-Device Power Electronics System., 2019,,.		7
7	Novel cooling technology to reduce thermal impedance and thermomechanical stress for SiC application. , 2017, , .		5
8	Electro-Thermal Limited Switching Frequency for Parallel Diodes. , 2018, , .		5
9	Hybrid-Mode Adaptive Zero-Voltage Switching for Single-Phase DC–AC Conversion With Paralleled SiC MOSFETs. IEEE Transactions on Power Electronics, 2022, 37, 14067-14081.	7.9	5
10	Condition monitoring for solder layer degradation in multiâ€device system based on neural network. Journal of Engineering, 2019, 2019, 3582-3586.	1.1	4
11	Monitoring Power Module Solder Degradation From Heat Dissipation in Two Opposite Directions. IEEE Transactions on Power Electronics, 2022, 37, 9754-9766.	7.9	4
12	Enabling high reliability power modules: A multidisciplinary task. , 2016, , .		2
13	Junction temperature estimation approach based on TSEPs in multichip IGBT modules. Journal of Power Electronics, 0, , .	1.5	O