Saji Augustine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307141/publications.pdf

Version: 2024-02-01

	933447	996975
219	10	15
citations	h-index	g-index
1.0	1.0	220
18	18	320
docs citations	times ranked	citing authors
	citations 18	219 10 citations h-index 18 18

#	Article	IF	CITATIONS
1	Structural, electrical and optical properties of Bi2Se3 and Bi2Se(3â^'x)Tex thin films. Materials Research Bulletin, 2005, 40, 1314-1325.	5.2	44
2	Growth, morphology, and microindentation analysis of Bi2Se3, Bi1.8In0.2Se3, and Bi2Se2.8Te0.2 single crystals. Materials Research Bulletin, 2001, 36, 2251-2261.	5.2	36
3	Effects of fast electron bombardment and annealing on Bi2Te3and Bi2Te2.9Se0.1single crystals. Semiconductor Science and Technology, 2003, 18, 745-754.	2.0	16
4	Mechanism and Nanosize Products of the Solâ^'Gel Reaction Using Diphenylsilanediol and 3-Methacryloxypropyltrimethoxysilane as Precursors. Journal of Physical Chemistry B, 2005, 109, 9397-9403.	2.6	16
5	A Facile Way to Control the Number of Walls in Carbon Nanotubes through the Synthesis of Exposedâ€Core/Shell Catalyst Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 9904-9907.	13.8	16
6	Nanopores in carbon nitride nanotubes: Reversible hydrogen storage sites. Applied Physics Letters, 2006, 89, 253119.	3.3	15
7	Dysprosium-substitution-induced structural changes of multiferroic nanocrystalline bismuth ferrite and the investigation through positron annihilation and other studies. Physica B: Condensed Matter, 2020, 599, 412431.	2.7	14
8	Dislocation, annealing and quenching effects on the microindentation hardness of Bi2Te3 and Bi2Te2.9Se.1 single crystals. Materials Characterization, 2004, 52, 253-262.	4.4	13
9	Effect of Te doping and electron irradiation on thermal diffusivity of Bi2Se3thin films by photo-thermal technique. Journal Physics D: Applied Physics, 2003, 36, 994-1000.	2.8	12
10	Defects characterization studies of europium-substituted bismuth ferrite nanocrystals by positron annihilation and other methods. Journal Physics D: Applied Physics, 2018, 51, 435303.	2.8	11
11	Tailoring the dielectric and magnetic properties of Eu-substituted BiFeO3 nanoparticles. Materials Today: Proceedings, 2020, 25, 134-139.	1.8	6
12	Investigations on the properties of indium sulphide –Graphene nanocomposite thin films. Thin Solid Films, 2020, 695, 137758.	1.8	5
13	Optoelectronic Characteristics of In2S3-CNT Nanocomposite Thin Films for Photodetector Application. Journal of Electronic Materials, 2021, 50, 2800-2812.	2.2	4
14	Bi4LnNb3O15 (Ln=La, Pr, Nd) and Bi4LaTa3O15: New intergrowth Aurivillius related phases. Materials Research Bulletin, 2005, 40, 920-927.	5.2	3
15	A study of Cr3+-substitution induced defects restructuring in BiFeO3 by positron annihilation and other supportive methods. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115286.	2.7	3
16	In2S3-Gr and In2S3-CNT nanocomposite thin films as gas sensors. Diamond and Related Materials, 2022, 128, 109215.	3.9	3
17	Sculpting fabrication of nanocrater catalysts and exclusive control of wall numbers and diameters in carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 15175.	6.7	2
18	Inside Cover: A Facile Way to Control the Number of Walls in Carbon Nanotubes through the Synthesis of Exposed-Core/Shell Catalyst Nanoparticles (Angew. Chem. Int. Ed. 51/2008). Angewandte Chemie - International Edition, 2008, 47, 9784-9784.	13.8	0