
Wen-Chao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chemical Communications, 2015, 51, 7520-7523.	4.1	228
2	Photoredox Catalysis in C–S Bond Construction: Recent Progress in Photo atalyzed Formation of Sulfones and Sulfoxides. Advanced Synthesis and Catalysis, 2018, 360, 386-400.	4.3	198
3	Cross-Coupling Hydrogen Evolution by Visible Light Photocatalysis Toward C(sp ²)–P Formation: Metal-Free C–H Functionalization of Thiazole Derivatives with Diarylphosphine Oxides. Organic Letters, 2016, 18, 452-455.	4.6	140
4	Recent Advances in the Construction of Spiro Compounds <i>via</i> Radical Dearomatization. Advanced Synthesis and Catalysis, 2020, 362, 4446-4461.	4.3	123
5	Photoredox Catalysis in Organophosphorus Chemistry. Asian Journal of Organic Chemistry, 2017, 6, 350-367.	2.7	100
6	Cascade C(sp ³)–S Bond Cleavage and Imidoyl C–S Formation: Radical Cyclization of 2-Isocyanoaryl Thioethers toward 2-Substituted Benzothiazoles. Organic Letters, 2018, 20, 3144-3147.	4.6	94
7	Photochemical and electrochemical strategies in C–F bond activation and functionalization. Organic Chemistry Frontiers, 2022, 9, 853-873.	4.5	71
8	Aldehydes as Carbon Radical Acceptors: Silver Nitrate Catalyzed Cascade Decarboxylation and Oxidative Cyclization toward Dihydroflavonoid Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 2390-2395.	4.3	68
9	Aliphatic Aldehydes: Novel Radical Alkylating Reagents. Advanced Synthesis and Catalysis, 2019, 361, 1700-1709.	4.3	67
10	Silver-catalyzed amidation of benzoylformic acids with tertiary amines via selective carbon–nitrogen bond cleavage. Organic and Biomolecular Chemistry, 2013, 11, 3649.	2.8	63
11	Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596, 124746.	4.7	58
12	Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF ₃ : Access to SCF ₃ -Containing Spiro[5,5]trienones. Organic Letters, 2021, 23, 6691-6696.	4.6	58
13	lodide/ <i>tertâ€</i> Butyl Hydroperoxideâ€Mediated Benzylic C–H Sulfonylation and Peroxidation of Phenol Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 3184-3190.	4.3	43
14	Metal-free photo-induced radical C-P and C-S bond formation for the synthesis of 2-phosphoryl benzothiazoles. Chinese Chemical Letters, 2020, 31, 1313-1316.	9.0	41
15	Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Organic and Biomolecular Chemistry, 2021, 19, 3844-3849.	2.8	36
16	<i>Tert</i> â€Butyl Nitrite Mediated Expeditious Methylsulfoxidation of Tetrazoleâ€amines with DMSO: Metalâ€free Synthesis of Antifungal Active Methylsulfinylâ€1 <i>H</i> â€tetrazole Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 468-473.	4.3	34
17	Di- <i>tert</i> -butyl Peroxide-Mediated Radical C(sp ² /sp ³)–S Bond Cleavage and Group-Transfer Cyclization. Organic Letters, 2019, 21, 7851-7856.	4.6	31
18	Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors. Chinese Journal of Organic Chemistry, 2020, 40, 4060.	1.3	31

Wen-Chao Yang

#	Article	IF	CITATIONS
19	Development of abamectinâ€loaded nanoemulsion and its insecticidal activity and cytotoxicity. Pest Management Science, 2020, 76, 4192-4201.	3.4	30
20	Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity. Nanotechnology, 2020, 31, 345705.	2.6	24
21	Development and Characterization of Pyriproxyfen-Loaded Nanoemulsion for Housefly Control: Improving Activity, Reducing Toxicity, and Protecting Ecological Environment. ACS Sustainable Chemistry and Engineering, 2021, 9, 4988-4999.	6.7	24
22	Regioselective synthesis of triazoles via base-promoted oxidative cycloaddition of chalcones with azides in aqueous solution. RSC Advances, 2015, 5, 95833-95839.	3.6	23
23	Copper-catalyzed regioselective alkylation of heteroarenes with functionalized alkyl halides. Tetrahedron Letters, 2019, 60, 1792-1795.	1.4	23
24	Radical denitrogenative transformations of polynitrogen heterocycles: Building C–N bonds and beyond. Chinese Journal of Catalysis, 2021, 42, 1865-1875.	14.0	23
25	DTBPâ€Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5]trienones through C(sp ³)â^H Bond Functionalization. European Journal of Organic Chemistry, 2021, 2021, 4465-4468.	2.4	22
26	K2S2O8-promoted radical trifluoromethylthiolation/spirocyclization for the synthesis of SCF3â€featured spiro[5,5]trienones. Tetrahedron, 2022, 106-107, 132649.	1.9	15
27	Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp ³)–H Oxidation of Phenol Derivatives. Journal of Organic Chemistry, 2022, 87, 7806-7817.	3.2	15
28	Research Progress in Radical Cascade Reaction Using Nitrogen Heterocycle in Indoles as Radical Acceptors. Chinese Journal of Organic Chemistry, 2022, 42, 75.	1.3	14
29	Synthesis, antibacterial evaluation, and safety assessment of <scp>CuS NPs</scp> against <scp><i>Pectobacterium carotovorum</i></scp> subsp. <scp><i>carotovorum</i></scp> . Pest Management Science, 2022, 78, 733-742.	3.4	10
30	Allenylphosphine Oxides as Starting Materials for the Synthesis of Conjugated Enynes: Boosting the Catalytic Performance by MOF Encapsulated Palladium Nanoparticles. Advanced Synthesis and Catalysis, 2018, 360, 3518-3525.	4.3	9
31	Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants. International Journal of Biological Macromolecules, 2021, 183, 1346-1351.	7.5	6
32	Latent Radical Cleavage of α-Allenylic C–O Bonds: Potassium Persulfate Mediated Thiolation of Allenylphosphine Oxides. Synthesis, 2018, 50, 2990-2998.	2.3	1
33	Construction and Characterization of a Single-Chain Variable Fragment (scFv) for the Detection of Cry1Ab and Cry1Ac Toxins from the Anti-Cry1Ab Monoclonal Antibody. Food Analytical Methods, 0, , 1.	2.6	1