
David Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127, 2406-2410.	1.4	622
2	International, evidence-based consensus diagnostic criteria for HHV-8–negative/idiopathic multicentric Castleman disease. Blood, 2017, 129, 1646-1657.	1.4	381
3	Validation and Implementation of Targeted Capture and Sequencing for the Detection of Actionable Mutation, Copy Number Variation, and Gene Rearrangement in Clinical Cancer Specimens. Journal of Molecular Diagnostics, 2014, 16, 56-67.	2.8	234
4	High-Throughput Sequencing Detects Minimal Residual Disease in Acute T Lymphoblastic Leukemia. Science Translational Medicine, 2012, 4, 134ra63.	12.4	207
5	Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood, 2018, 131, 1350-1359.	1.4	158
6	Detection of Minimal Residual Disease in B Lymphoblastic Leukemia by High-Throughput Sequencing of <i>IGH</i> . Clinical Cancer Research, 2014, 20, 4540-4548.	7.0	138
7	Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell–rich and exhausted T-effector microenvironment. Blood, 2018, 132, 825-836.	1.4	121
8	ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Advances, 2019, 3, 2962-2979.	5.2	110
9	Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Advances, 2019, 3, 4065-4080.	5.2	99
10	International evidence-based consensus diagnostic and treatment guidelines for unicentric Castleman disease. Blood Advances, 2020, 4, 6039-6050.	5.2	94
11	Pathology of Castleman Disease. Hematology/Oncology Clinics of North America, 2018, 32, 37-52.	2.2	83
12	Clinicopathologic Features and Prognostic Impact of Lymph Node Involvement in Patients With Breast Implant-associated Anaplastic Large Cell Lymphoma. American Journal of Surgical Pathology, 2018, 42, 293-305.	3.7	80
13	Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. Modern Pathology, 2014, 27, 1438-1446.	5.5	49
14	CADD score has limited clinical validity for the identification of pathogenic variants in noncoding regions in a hereditary cancer panel. Genetics in Medicine, 2016, 18, 1269-1275.	2.4	45
15	Pretransplantation Minimal Residual Disease Predicts Survival in Patients with Mantle Cell Lymphoma Undergoing Autologous Stem Cell Transplantation in Complete Remission. Biology of Blood and Marrow Transplantation, 2016, 22, 380-385.	2.0	37
16	Deep NPM1 Sequencing Following Allogeneic Hematopoietic Cell Transplantation Improves Risk Assessment in Adults with NPM1-Mutated AML. Biology of Blood and Marrow Transplantation, 2018, 24, 1615-1620.	2.0	29
17	Ultrasensitive detection of acute myeloid leukemia minimal residual disease using single molecule molecular inversion probes. Haematologica, 2017, 102, 1549-1557.	3.5	28
18	Pattern associated leukemia immunophenotypes and measurable disease detection in acute myeloid leukemia or myelodysplastic syndrome with mutated <i>NPM1</i> . Cytometry Part B - Clinical Cytometry, 2019, 96, 67-72.	1.5	26

David Wu

#	Article	IF	CITATIONS
19	A novel disease-causing synonymous exonic mutation in GATA2 affecting RNA splicing. Blood, 2018, 132, 1211-1215.	1.4	25
20	Flow Cytometry for Non-Hodgkin and Classical Hodgkin Lymphoma. Methods in Molecular Biology, 2013, 971, 27-47.	0.9	23
21	Recurrent somatic loss of <scp><i>TNFRSF14</i></scp> in classical Hodgkin lymphoma. Genes Chromosomes and Cancer, 2016, 55, 278-287.	2.8	23
22	How I curate: applying American Society of Hematology-Clinical Genome Resource Myeloid Malignancy Variant Curation Expert Panel rules for RUNX1 variant curation for germline predisposition to myeloid malignancies. Haematologica, 2020, 105, 870-887.	3.5	23
23	Reactive T cells by flow cytometry distinguish Hodgkin lymphomas from T cell/histiocyteâ€rich large B cell lymphoma. Cytometry Part B - Clinical Cytometry, 2016, 90, 424-432.	1.5	22
24	Myeloid/lymphoid neoplasms with FLT3 rearrangement. Modern Pathology, 2021, 34, 1673-1685.	5.5	21
25	Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. , 2014, , n/a-n/a.		19
26	On-Going Evolution Of IGH In B-Cell Precursor Acute Lymphoblastic Leukemia Does Not Substantially Affect Day 29, Post-Treatment MRD Quantification By High-Throughput Sequencing. Blood, 2013, 122, 1341-1341.	1.4	19
27	Insufficient evidence exists to use histopathologic subtype to guide treatment of idiopathic multicentric Castleman disease. American Journal of Hematology, 2020, 95, 1553-1561.	4.1	18
28	Flow cytometry of ALK-negative anaplastic large cell lymphoma of breast implant-associated effusion and capsular tissue. , 2015, 88, 58-63.		16
29	Computer-Aided Detection of Rare Tumor Populations in Flow Cytometry. American Journal of Clinical Pathology, 2015, 144, 517-524.	0.7	12
30	Flow cytometric features of incidental indolent T lymphoblastic proliferations. Cytometry Part B - Clinical Cytometry, 2020, 98, 282-287.	1.5	12
31	Robust Detection Of Minimal Residual Disease In Unselected Patients With B-Cell Precursor Acute Lymphoblastic Leukemia By High-Throughput Sequencing Of IGH. Blood, 2013, 122, 2550-2550.	1.4	12
32	Clinical Experience With Modified, Single-Tube T-Cell Receptor Vβ Flow Cytometry Analysis for T-Cell Clonality. American Journal of Clinical Pathology, 2016, 145, 467-485.	0.7	11
33	Crossâ€Platform DNA Encoding for Single ell Imaging of Gene Expression. Angewandte Chemie - International Edition, 2016, 55, 8975-8978.	13.8	10
34	Flow Cytometry for Non-Hodgkin and Hodgkin Lymphomas. Methods in Molecular Biology, 2019, 1956, 35-60.	0.9	9
35	Full-Length Isoforms of Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Accumulate in the Cytoplasm of Cells Undergoing the Lytic Cycle of Replication. Journal of Virology, 2017, 91, .	3.4	8
36	De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning. American Journal of Clinical Pathology, 2021, 156, 1092-1102.	0.7	8

David Wu

#	Article	IF	CITATIONS
37	Cutaneous T-Cell Lymphoma in Sub-Saharan Africa. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 275-280.	4.9	7
38	Jumping translocations in myelodysplastic syndromes. Cancer Genetics, 2016, 209, 395-402.	0.4	7
39	Bendamustine with rituximab, etoposide and carboplatin (T(R) <scp>EC</scp>) in relapsed or refractory aggressive lymphoma: a prospective multicentre phase 1/2 clinical trial. British Journal of Haematology, 2018, 183, 601-607.	2.5	7
40	Early Tâ€Cell Precursor Acute Lymphoblastic Leukemia in an Infant With an <i>NRAS</i> Q61R Mutation and Clinical Features of Juvenile Myelomonocytic Leukemia. Pediatric Blood and Cancer, 2016, 63, 1667-1670.	1.5	5
41	Potential for Process Improvement of Clinical Flow Cytometry by Incorporating Real-Time Automated Screening of Data to Expedite Addition of Antibody Panels. American Journal of Clinical Pathology, 2022, 157, 443-450.	0.7	5
42	Targeted Next-Generation Sequencing of Acute Leukemia. Methods in Molecular Biology, 2017, 1633, 163-184.	0.9	4
43	A Curriculum for Genomic Education of Molecular Genetic Pathology Fellows. Journal of Molecular Diagnostics, 2021, 23, 1218-1240.	2.8	4
44	Ultrasensitive Detection of Chimerism by Single-Molecule Molecular Inversion Probe Capture and High-Throughput Sequencing of Copy Number Deletion Polymorphisms. Clinical Chemistry, 2018, 64, 938-949.	3.2	3
45	Ultrasensitive Quantitation of Genomic Chimerism by Single-Molecule Molecular Inversion Probe Capture and High-Throughput Sequencing of Copy Number Deletion Polymorphisms. Journal of Molecular Diagnostics, 2021, , .	2.8	3
46	Residual Disease Monitoring By High Throughput Sequencing Provides Risk Stratification in Childhood B-ALL and Identifies a Novel Subset of Patients Having Poor Outcome. Blood, 2016, 128, 1086-1086.	1.4	2
47	Comprehensive Evaluation and Validation of a Next-Generation Sequencing Assay for Minimal Residual Disease Detection in T-Lymphoblastic Leukemia/Lymphoma. Blood, 2019, 134, 1475-1475.	1.4	2
48	Bone Marrow Involvement Detected By Multi-Parameter Flow Cytometry Predicts Poor Outcome after Autologous Stem Cell Transplantation for Peripheral T-Cell Lymphoma. Blood, 2015, 126, 1972-1972.	1.4	1
49	Crossâ€Platform DNA Encoding for Single ell Imaging of Gene Expression. Angewandte Chemie, 2016, 128, 9121-9124.	2.0	0
50	Commentary on A Case of Rapid Deterioration with Marked Hypergammaglobulinemia. Clinical Chemistry, 2020, 66, 1379-1380.	3.2	0
51	Detection Of Recurrent/Persistent Disease By T-Cell Receptor Repertoire Profiling In Patients With Mature T-Cell Neoplasm. Blood, 2013, 122, 2614-2614.	1.4	0
52	Detection of Mutations in Inherited Bone Marrow Failure and Myelodysplastic Syndrome Genes Using Genomic Capture and Massively Parallel Sequencing in Clinical Diagnostics. Blood, 2016, 128, 1507-1507.	1.4	0
53	Comparative Genomic Analyses Defines Shared and Unique Features of cHL and PMBL and New Mechanisms of Sensitivity to PD-1 Blockade. Blood, 2019, 134, 1493-1493.	1.4	0
54	Expert Curation of Somatic Variants in Hematological Malignancies By the Clingen Somatic Hematological Cancer Taskforce (ClinGen HCT). Blood, 2020, 136, 23-23.	1.4	0