Benjamin Heit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1306510/publications.pdf Version: 2024-02-01

RENIAMIN HEIT

#	Article	IF	CITATIONS
1	The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen. Surveys in Geophysics, 2018, 39, 1009-1033.	2.1	138
2	An S receiver function analysis of the lithospheric structure in South America. Geophysical Research Letters, 2007, 34, .	1.5	96
3	Aftershock seismicity of the 27 February 2010 Mw 8.8 Maule earthquake rupture zone. Earth and Planetary Science Letters, 2012, 317-318, 413-425.	1.8	80
4	Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophysical Journal International, 2009, 177, 733-742.	1.0	79
5	Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. Tectonophysics, 2013, 586, 65-83.	0.9	76
6	Crustal thickness estimation beneath the southern central Andes at 30°S and 36°S from <i>S</i> wave receiver function analysis. Geophysical Journal International, 2008, 174, 249-254.	1.0	48
7	Receiver function images from the Moho and the slab beneath the Altiplano and Puna plateaus in the Central Andes. Geophysical Journal International, 2009, 177, 296-308.	1.0	48
8	Seismicity and average velocities beneath the Argentine Puna Plateau. Geophysical Research Letters, 1999, 26, 3025-3028.	1.5	44
9	Central Andean mantle and crustal seismicity beneath the Southern Puna plateau and the northern margin of the Chileanâ€Pampean flat slab. Tectonics, 2014, 33, 1636-1658.	1.3	42
10	More constraints to determine the seismic structure beneath the Central Andes at 21°S using teleseismic tomography analysis. Journal of South American Earth Sciences, 2008, 25, 22-36.	0.6	40
11	Structure of the crust and the lithosphere beneath the southern Puna plateau from teleseismic receiver functions. Earth and Planetary Science Letters, 2014, 385, 1-11.	1.8	40
12	Crustal thickness and <i>V_p</i> / <i>V_s</i> ratio in NW Namibia from receiver functions: Evidence for magmatic underplating due to mantle plumeâ€crust interaction. Geophysical Research Letters, 2015, 42, 3330-3337.	1.5	27
13	Study of the lithospheric and upper-mantle discontinuities beneath eastern Asia by SS precursors. Geophysical Journal International, 2010, 183, 252-266.	1.0	25
14	Velocity structure beneath the southern Puna plateau: Evidence for delamination. Geochemistry, Geophysics, Geosystems, 2013, 14, 4292-4305.	1.0	25
15	Tearing of the mantle lithosphere along the intermediateâ€depth seismicity zone beneath the Gibraltar Arc: The onset of lithospheric delamination. Geophysical Research Letters, 2017, 44, 4027-4035.	1.5	25
16	Seismological Studies of the Central and Southern Andes. , 2006, , 443-457.		24
17	Delamination of southern Puna lithosphere revealed by body wave attenuation tomography. Journal of Geophysical Research: Solid Earth, 2014, 119, 549-566.	1.4	23
18	A STEP fault in Central Betics, associated with lateral lithospheric tearing at the northern edge of the Gibraltar arc subduction system. Earth and Planetary Science Letters, 2018, 486, 32-40.	1.8	22

Benjamin Heit

#	Article	IF	CITATIONS
19	Full Waveform Inversion Beneath the Central Andes: Insight Into the Dehydration of the Nazca Slab and Delamination of the Backâ€Arc Lithosphere. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021984.	1.4	21
20	Receiver function images of the base of the lithosphere in the Alboran Sea region. Geophysical Journal International, 2011, 187, 1019-1026.	1.0	18
21	BRAVOSEIS: Geophysical investigation of rifting and volcanism in the Bransfield strait, Antarctica. Journal of South American Earth Sciences, 2020, 104, 102834.	0.6	16
22	Seismic structure of the lithosphere beneath <scp>NW</scp> <scp>N</scp> amibia: Impact of the <scp>T</scp> ristan da <scp>C</scp> unha mantle plume. Geochemistry, Geophysics, Geosystems, 2017, 18, 125-141.	1.0	14
23	The SWATH-D Seismological Network in the Eastern Alps. Seismological Research Letters, 2021, 92, 1592-1609.	0.8	12
24	Connection between the Jurassic oceanic lithosphere of the Gulf of Cádiz and the Alboran slab imaged by Sp receiver functions. Geology, 2019, 47, 227-230.	2.0	11
25	Shear wave splitting and shear wave splitting tomography of the southern Puna plateau. Geophysical Journal International, 2014, 199, 688-699.	1.0	10
26	Lithospheric Delamination Beneath the Southern Puna Plateau Resolved by Local Earthquake Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019040.	1.4	9
27	Impact of the Juan Fernandez Ridge on the Pampean Flat Subduction Inferred From Full Waveform Inversion. Geophysical Research Letters, 2021, 48, e2021GL095509.	1.5	7
28	Moho and uppermost mantle structure in the Alpine area from S-to-P converted waves. Solid Earth, 2021, 12, 2503-2521.	1.2	7
29	Backâ€Arc Extension of the Central Bransfield Basin Induced by Ridge–Trench Collision: Implications From Ambient Noise Tomography and Stress Field Inversion. Geophysical Research Letters, 2021, 48, e2021GL095032.	1.5	6
30	Constraints on Crustal Structure in the Vicinity of the Adriatic Indenter (European Alps) From <i>Vp</i> and <i>Vp</i> / <i>Vs</i> Local Earthquake Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6
31	Preservation of the Iberian Tethys paleomargin beneath the eastern Betic mountain range. Gondwana Research, 2022, 106, 237-246.	3.0	3
32	Controls on crustal seismicity segmentation on a local scale in the Southern Central Andes. Journal of South American Earth Sciences, 2022, 116, 103778.	0.6	2