
Nikos K Logothetis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1306458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412, 150-157.	13.7	5,739
2	What we can do and what we cannot do with fMRI. Nature, 2008, 453, 869-878.	13.7	2,912
3	Interpreting the BOLD Signal. Annual Review of Physiology, 2004, 66, 735-769.	5.6	1,320
4	Visual competition. Nature Reviews Neuroscience, 2002, 3, 13-21.	4.9	1,305
5	Multistable phenomena: changing views in perception. Trends in Cognitive Sciences, 1999, 3, 254-264.	4.0	1,109
6	Shape representation in the inferior temporal cortex of monkeys. Current Biology, 1995, 5, 552-563.	1.8	919
7	Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 1996, 379, 549-553.	13.7	916
8	The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal. Journal of Neuroscience, 2003, 23, 3963-3971.	1.7	880
9	Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 2006, 9, 569-577.	7.1	809
10	The neural basis of the blood–oxygen–level–dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1003-1037.	1.8	786
11	Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Reviews Neuroscience, 2013, 14, 770-785.	4.9	693
12	Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms. Neuron, 2013, 80, 751-764.	3.8	670
13	Very Slow Activity Fluctuations in Monkey Visual Cortex: Implications for Functional Brain Imaging. Cerebral Cortex, 2003, 13, 422-433.	1.6	594
14	What is rivalling during binocular rivalry?. Nature, 1996, 380, 621-624.	13.7	570
15	Decorrelated Neuronal Firing in Cortical Microcircuits. Science, 2010, 327, 584-587.	6.0	562
16	Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 2002, 415, 318-320.	13.7	511
17	Functional imaging of the monkey brain. Nature Neuroscience, 1999, 2, 555-562.	7.1	505
18	Neurophysiology of the BOLD fMRI Signal in Awake Monkeys. Current Biology, 2008, 18, 631-640.	1.8	504

#	Article	IF	CITATIONS
19	Multisensory Integration of Dynamic Faces and Voices in Rhesus Monkey Auditory Cortex. Journal of Neuroscience, 2005, 25, 5004-5012.	1.7	497
20	Visual Modulation of Neurons in Auditory Cortex. Cerebral Cortex, 2008, 18, 1560-1574.	1.6	478
21	Functions of the colour-opponent and broad-band channels of the visual system. Nature, 1990, 343, 68-70.	13.7	434
22	Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences, 2010, 33, 111-120.	4.2	432
23	Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns. Neuron, 2009, 61, 597-608.	3.8	427
24	In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation. Neuron, 2007, 55, 809-823.	3.8	412
25	Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information. Journal of Neuroscience, 2008, 28, 5696-5709.	1.7	381
26	Hippocampal–cortical interaction during periods of subcortical silence. Nature, 2012, 491, 547-553.	13.7	370
27	Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex. Neuron, 2005, 45, 147-156.	3.8	369
28	Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex. Current Biology, 2008, 18, 375-380.	1.8	361
29	On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imaging, 2004, 22, 1517-1531.	1.0	349
30	Integration of Touch and Sound in Auditory Cortex. Neuron, 2005, 48, 373-384.	3.8	338
31	Stable perception of visually ambiguous patterns. Nature Neuroscience, 2002, 5, 605-609.	7.1	328
32	A voice region in the monkey brain. Nature Neuroscience, 2008, 11, 367-374.	7.1	323
33	Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex. Neuron, 2009, 64, 281-289.	3.8	314
34	Direct electrical stimulation of human cortex — the gold standard for mapping brain functions?. Nature Reviews Neuroscience, 2012, 13, 63-70.	4.9	313
35	Role of the color-opponent and broad-band channels in vision. Visual Neuroscience, 1990, 5, 321-346.	0.5	306
36	The effects of electrical microstimulation on cortical signal propagation. Nature Neuroscience, 2010, 13, 1283-1291.	7.1	301

#	Article	IF	CITATIONS
37	The Amplitude and Timing of the BOLD Signal Reflects the Relationship between Local Field Potential Power at Different Frequencies. Journal of Neuroscience, 2012, 32, 1395-1407.	1.7	300
38	Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 2012, 15, 456-462.	7.1	291
39	Vocal-Tract Resonances as Indexical Cues in Rhesus Monkeys. Current Biology, 2007, 17, 425-430.	1.8	289
40	The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 1990, 13, 392-398.	4.2	269
41	Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. NeuroImage, 2007, 35, 539-552.	2.1	266
42	Integration of Local Features into Global Shapes. Neuron, 2003, 37, 333-346.	3.8	260
43	Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. NeuroImage, 2007, 37, 1161-1177.	2.1	258
44	Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biological Cybernetics, 2014, 108, 541-557.	0.6	255
45	Mechanisms for Allocating Auditory Attention: An Auditory Saliency Map. Current Biology, 2005, 15, 1943-1947.	1.8	249
46	Do early sensory cortices integrate cross-modal information?. Brain Structure and Function, 2007, 212, 121-132.	1.2	247
47	Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons. PLoS Computational Biology, 2008, 4, e1000239.	1.5	247
48	Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala. Current Biology, 2007, 17, 766-772.	1.8	238
49	Facial expressions linked to monkey calls. Nature, 2003, 423, 937-938.	13.7	236
50	Mapping Cortical Activity Elicited with Electrical Microstimulation Using fMRI in the Macaque. Neuron, 2005, 48, 901-911.	3.8	234
51	High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses. Neuron, 2012, 76, 629-639.	3.8	234
52	The Microvascular System of the Striate and Extrastriate Visual Cortex of the Macaque. Cerebral Cortex, 2008, 18, 2318-2330.	1.6	229
53	Functional Imaging Reveals Visual Modulation of Specific Fields in Auditory Cortex. Journal of Neuroscience, 2007, 27, 1824-1835.	1.7	222
54	Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision. Journal of Neuroscience, 2001, 21, 1340-1350.	1.7	214

#	Article	IF	CITATIONS
55	Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey. Neuron, 2002, 34, 685-700.	3.8	213
56	Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Experimental Brain Research, 1998, 123, 341-345.	0.7	212
57	Interactions between the Superior Temporal Sulcus and Auditory Cortex Mediate Dynamic Face/Voice Integration in Rhesus Monkeys. Journal of Neuroscience, 2008, 28, 4457-4469.	1.7	210
58	Lack of long-term cortical reorganization after macaque retinal lesions. Nature, 2005, 435, 300-307.	13.7	205
59	Inferring Spike Trains From Local Field Potentials. Journal of Neurophysiology, 2008, 99, 1461-1476.	0.9	201
60	A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neuroscience, 2009, 10, 81.	0.8	198
61	Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex. PLoS Biology, 2006, 4, e215.	2.6	194
62	Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2002, 22, 10416-10426.	1.7	184
63	Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magnetic Resonance Imaging, 2006, 24, 381-392.	1.0	179
64	Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. Neuron, 2012, 74, 924-935.	3.8	176
65	Awakening: Predicting external stimulation to force transitions between different brain states. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18088-18097.	3.3	176
66	Von Economo Neurons in the Anterior Insula of the Macaque Monkey. Neuron, 2012, 74, 482-489.	3.8	174
67	Attention But Not Awareness Modulates the BOLD Signal in the Human V1 During Binocular Suppression. Science, 2011, 334, 829-831.	6.0	173
68	Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9566-9576.	3.3	173
69	Visual Enhancement of the Information Representation in Auditory Cortex. Current Biology, 2010, 20, 19-24.	1.8	168
70	Local field potential reflects perceptual suppression in monkey visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17507-17512.	3.3	166
71	Improvement of visual contrast detection by a simultaneous sound. Brain Research, 2007, 1173, 102-109.	1.1	164
72	Voice Cells in the Primate Temporal Lobe. Current Biology, 2011, 21, 1408-1415.	1.8	164

#	Article	IF	CITATIONS
73	Monkeys Match the Number of Voices They Hear to the Number of Faces They See. Current Biology, 2005, 15, 1034-1038.	1.8	159
74	Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Current Biology, 2018, 28, 3065-3074.e6.	1.8	159
75	Three-Dimensional Shape Representation in Monkey Cortex. Neuron, 2002, 33, 635-652.	3.8	152
76	Ultra High-Resolution fMRI in Monkeys with Implanted RF Coils. Neuron, 2002, 35, 227-242.	3.8	152
77	Recording Chronically From the Same Neurons in Awake, Behaving Primates. Journal of Neurophysiology, 2007, 98, 3780-3790.	0.9	151
78	Multisensory Integration of Looming Signals by Rhesus Monkeys. Neuron, 2004, 43, 177-181.	3.8	143
79	Metabolic and Hemodynamic Events after Changes in Neuronal Activity: Current Hypotheses, Theoretical Predictions and <i>in vivo</i> NMR Experimental Findings. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 441-463.	2.4	143
80	Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2008, 2, 2.	1.2	141
81	The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6759-6764.	3.3	139
82	fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends in Neurosciences, 2008, 31, 444-453.	4.2	137
83	The Coding of Color, Motion, and Their Conjunction in the Human Visual Cortex. Current Biology, 2009, 19, 177-183.	1.8	137
84	Unimodal Responses Prevail within the Multisensory Claustrum. Journal of Neuroscience, 2010, 30, 12902-12907.	1.7	136
85	The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System. Neuron, 2018, 99, 1055-1068.e6.	3.8	133
86	EEG Phase Patterns Reflect the Selectivity of Neural Firing. Cerebral Cortex, 2013, 23, 389-398.	1.6	128
87	Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli. Nature Neuroscience, 2005, 8, 591-593.	7.1	126
88	Coding and Binding of Color and Form in Visual Cortex. Cerebral Cortex, 2010, 20, 1946-1954.	1.6	123
89	An Auditory Region in the Primate Insular Cortex Responding Preferentially to Vocal Communication Sounds. Journal of Neuroscience, 2009, 29, 1034-1045.	1.7	121
90	fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques. Neuron, 2011, 70, 352-362.	3.8	121

#	Article	IF	CITATIONS
91	Nonlinear partial differential equations and applications: Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15755-15757.	3.3	118
92	Millisecond encoding precision of auditory cortex neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16976-16981.	3.3	116
93	IS FACE RECOGNITION NOT SO UNIQUE AFTER ALL?. Cognitive Neuropsychology, 2000, 17, 125-142.	0.4	115
94	Humans and Macaques Employ Similar Face-Processing Strategies. Current Biology, 2009, 19, 509-513.	1.8	112
95	How not to study spontaneous activity. NeuroImage, 2009, 45, 1080-1089.	2.1	112
96	The Effect of Learning on the Function of Monkey Extrastriate Visual Cortex. PLoS Biology, 2004, 2, e44.	2.6	111
97	Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Frontiers in Neuroscience, 2008, 2, 199-207.	1.4	108
98	Dissociation Between Local Field Potentials and Spiking Activity in Macaque Inferior Temporal Cortex Reveals Diagnosticity-Based Encoding of Complex Objects. Journal of Neuroscience, 2006, 26, 9639-9645.	1.7	104
99	fMRI at High Spatial Resolution: Implications for BOLD-Models. Frontiers in Computational Neuroscience, 2016, 10, 66.	1.2	104
100	Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology, 2009, 19, 398-403.	1.8	103
101	Generalized Flash Suppression of Salient Visual Targets. Neuron, 2003, 39, 1043-1052.	3.8	102
102	Disrupting Parietal Function Prolongs Dominance Durations in Binocular Rivalry. Current Biology, 2010, 20, 2106-2111.	1.8	102
103	Perception of Temporally Interleaved Ambiguous Patterns. Current Biology, 2003, 13, 1076-1085.	1.8	101
104	Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EECs using a local cortical network model. NeuroImage, 2010, 52, 956-972.	2.1	101
105	Validation of High-Resolution Tractography Against <i>In Vivo</i> Tracing in the Macaque Visual Cortex. Cerebral Cortex, 2015, 25, 4299-4309.	1.6	101
106	Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2001, 21, 8594-8601.	1.7	99
107	Spatial Organization of Multisensory Responses in Temporal Association Cortex. Journal of Neuroscience, 2009, 29, 11924-11932.	1.7	98
108	Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer. PLoS Biology, 2015, 13, e1002257.	2.6	95

#	Article	IF	CITATIONS
109	Modular architectonic organization of the insula in the macaque monkey. Journal of Comparative Neurology, 2014, 522, 64-97.	0.9	92
110	Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. Journal of Neurophysiology, 2014, 111, 2570-2588.	0.9	91
111	MR imaging in the non-human primate: studies of function and of dynamic connectivity. Current Opinion in Neurobiology, 2003, 13, 630-642.	2.0	90
112	Multisensory interactions in primate auditory cortex: fMRI and electrophysiology. Hearing Research, 2009, 258, 80-88.	0.9	90
113	Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6379-87.	3.3	89
114	Nonmonotonic noise tuning of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey. Current Biology, 2001, 11, 846-854.	1.8	87
115	Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network. Current Biology, 2016, 26, 686-691.	1.8	86
116	Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magnetic Resonance Imaging, 2004, 22, 1343-1359.	1.0	84
117	Smart Magnetic Resonance Imaging Agents that Sense Extracellular Calcium Fluctuations. ChemBioChem, 2008, 9, 1729-1734.	1.3	84
118	Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex. Neuron, 2016, 90, 143-151.	3.8	82
119	The duration of 3-D form analysis in transformational apparent motion. Perception & Psychophysics, 2002, 64, 244-265.	2.3	80
120	Capillary hydrophilic interaction chromatography/mass spectrometry for simultaneous determination of multiple neurotransmitters in primate cerebral cortex. Rapid Communications in Mass Spectrometry, 2007, 21, 3621-3628.	0.7	79
121	Directed interactions between auditory and superior temporal cortices and their role in sensory integration. Frontiers in Integrative Neuroscience, 2009, 3, 7.	1.0	77
122	Temporal kernel CCA and its application in multimodal neuronal data analysis. Machine Learning, 2010, 79, 5-27.	3.4	77
123	Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1656-65.	3.3	76
124	Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex. PLoS ONE, 2009, 4, e5527.	1.1	75
125	Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands. Journal of Computational Neuroscience, 2010, 29, 533-545.	0.6	75
126	Tracing neural circuits in vivo with Mn-enhanced MRI. Magnetic Resonance Imaging, 2006, 24, 349-358.	1.0	73

#	Article	IF	CITATIONS
127	Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12834-12839.	3.3	73
128	Occipital White Matter Tracts in Human and Macaque. Cerebral Cortex, 2017, 27, 3346-3359.	1.6	73
129	Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA. Magnetic Resonance Imaging, 2010, 28, 1095-1103.	1.0	72
130	Spatial Specificity of BOLD versus Cerebral Blood Volume fMRI for Mapping Cortical Organization. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1248-1261.	2.4	70
131	Magnetic resonance imaging of cortical connectivity in vivo. NeuroImage, 2008, 40, 458-472.	2.1	70
132	A New Class of Gd-Based DO3A-Ethylamine-Derived Targeted Contrast Agents for MR and Optical Imaging. Bioconjugate Chemistry, 2006, 17, 773-780.	1.8	69
133	A role of the claustrum in auditory scene analysis by reflecting sensory change. Frontiers in Systems Neuroscience, 2014, 8, 44.	1.2	69
134	Single-trial evoked potential estimation using wavelets. Computers in Biology and Medicine, 2007, 37, 463-473.	3.9	68
135	fMRI measurements of color in macaque and human. Journal of Vision, 2008, 8, 6-6.	0.1	68
136	The ins and outs of fMRI signals. Nature Neuroscience, 2007, 10, 1230-1232.	7.1	67
137	Individuation and holistic processing of faces in rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2069-2076.	1.2	66
138	Ripple-triggered stimulation of the locus coeruleus during post-learning sleep disrupts ripple/spindle coupling and impairs memory consolidation. Learning and Memory, 2016, 23, 238-248.	0.5	66
139	Facile Synthesis and Relaxation Properties of Novel Bispolyazamacrocyclic Gd ³⁺ Complexes: An Attempt towards Calcium-Sensitive MRI Contrast Agents. Inorganic Chemistry, 2008, 47, 1370-1381.	1.9	65
140	Cortical dynamics during naturalistic sensory stimulations: Experiments and models. Journal of Physiology (Paris), 2011, 105, 2-15.	2.1	64
141	Tuning to Sound Frequency in Auditory Field Potentials. Journal of Neurophysiology, 2007, 98, 1806-1809.	0.9	63
142	Parallel pathways in the visual system: Their role in perception at isoluminance. Neuropsychologia, 1991, 29, 433-441.	0.7	62
143	Can current fMRI techniques reveal the micro-architecture of cortex?. Nature Neuroscience, 2000, 3, 413-413.	7.1	62
144	Towards extracellular Ca2+ sensing by MRI: synthesis and calcium-dependent 1H and 17O relaxation studies of two novel bismacrocyclic Gd3+ complexes. Journal of Biological Inorganic Chemistry, 2007, 13, 35-46.	1.1	62

#	Article	IF	CITATIONS
145	From Neurons to Circuits: Linear Estimation of Local Field Potentials. Journal of Neuroscience, 2009, 29, 13785-13796.	1.7	62
146	A new method for estimating population receptive field topography in visual cortex. NeuroImage, 2013, 81, 144-157.	2.1	62
147	High-resolution fMRI of macaque V1. Magnetic Resonance Imaging, 2007, 25, 740-747.	1.0	61
148	Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys. Magnetic Resonance Imaging, 2008, 26, 1007-1014.	1.0	61
149	Who is That? Brain Networks and Mechanisms for Identifying Individuals. Trends in Cognitive Sciences, 2015, 19, 783-796.	4.0	61
150	Binocular motion rivalry in macaque monkeys: Eye dominance and tracking eye movements. Vision Research, 1990, 30, 1409-1419.	0.7	60
151	Eye movements of monkey observers viewing vocalizing conspecifics. Cognition, 2006, 101, 515-529.	1.1	60
152	Human Areas V3A and V6 Compensate for Self-Induced Planar Visual Motion. Neuron, 2012, 73, 1228-1240.	3.8	60
153	Dynamics of lactate concentration and blood oxygen level-dependent effect in the human visual cortex during repeated identical stimuli. Journal of Neuroscience Research, 2007, 85, 3340-6.	1.3	58
154	Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal of Computational Neuroscience, 2010, 29, 547-566.	0.6	57
155	Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices. Journal of Neuroscience, 2014, 34, 2524-2537.	1.7	57
156	Synthesis and characterization of a smart contrast agent sensitive to calcium. Chemical Communications, 2008, , 3444.	2.2	56
157	Where Are the Human Speech and Voice Regions, and Do Other Animals Have Anything Like Them?. Neuroscientist, 2009, 15, 419-429.	2.6	56
158	Dopamine-Induced Dissociation of BOLD and Neural Activity in Macaque Visual Cortex. Current Biology, 2014, 24, 2805-2811.	1.8	55
159	Neural and BOLD responses across the brain. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 75-86.	1.4	54
160	Visibility states modulate microsaccade rate and direction. Vision Research, 2009, 49, 228-236.	0.7	52
161	Calcium-responsive paramagnetic CEST agents. Bioorganic and Medicinal Chemistry, 2011, 19, 1097-1105.	1.4	52
162	Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields. Journal of Magnetic Resonance, 2006, 183, 278-289.	1.2	51

#	Article	IF	CITATIONS
163	Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18010-18015.	3.3	51
164	Spatial Patterns of Spontaneous Local Field Activity in the Monkey Visual Cortex. Reviews in the Neurosciences, 2003, 14, 195-205.	1.4	50
165	Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magnetic Resonance Imaging, 2008, 26, 978-986.	1.0	50
166	The Role of the Primary Visual Cortex in Perceptual Suppression of Salient Visual Stimuli. Journal of Neuroscience, 2010, 30, 12353-12365.	1.7	50
167	Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex, 2013, 49, 2822-2833.	1.1	50
168	Long-Term Stability of Visual Pattern Selective Responses of Monkey Temporal Lobe Neurons. PLoS ONE, 2009, 4, e8222.	1.1	48
169	Stimulus Dependence of Local Field Potential Spectra: Experiment versus Theory. Journal of Neuroscience, 2014, 34, 14589-14605.	1.7	48
170	Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex. Neuron, 2017, 93, 971-983.e4.	3.8	48
171	Behavioral, electrophysiological and histopathological consequences of systemic manganese administration in MEMRI. Magnetic Resonance Imaging, 2010, 28, 1165-1174.	1.0	47
172	Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 273-278.	3.3	47
173	Vision: A Window on Consciousness. Scientific American, 1999, 281, 68-75.	1.0	46
174	Fixations in natural scenes: Interaction of image structure and image content. Vision Research, 2006, 46, 2535-2545.	0.7	46
175	Neurons with Stereotyped and Rapid Responses Provide a Reference Frame for Relative Temporal Coding in Primate Auditory Cortex. Journal of Neuroscience, 2012, 32, 2998-3008.	1.7	46
176	Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation. Magnetic Resonance Imaging, 2008, 26, 961-967.	1.0	45
177	Coupling of neural activity and fMRI-BOLD in the motion area MT. Magnetic Resonance Imaging, 2010, 28, 1087-1094.	1.0	45
178	A novel test to determine the significance of neural selectivity to single and multiple potentially correlated stimulus features. Journal of Neuroscience Methods, 2012, 210, 49-65.	1.3	44
179	Dualâ€Frequency Calciumâ€Responsive MRI Agents. Chemistry - A European Journal, 2014, 20, 7351-7362.	1.7	44
180	Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nature Communications, 2019, 10, 5239.	5.8	44

#	Article	IF	CITATIONS
181	Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Research, 2019, 1709, 50-66.	1.1	44
182	Critical In Vitro Evaluation of Responsive MRI Contrast Agents for Calcium and Zinc. Chemistry - A European Journal, 2011, 17, 1529-1537.	1.7	43
183	Saccades during Object Viewing Modulate Oscillatory Phase in the Superior Temporal Sulcus. Journal of Neuroscience, 2011, 31, 18423-18432.	1.7	43
184	MRI Sensing of Neurotransmitters with a Crown Ether Appended Gd ³⁺ Complex. ACS Chemical Neuroscience, 2015, 6, 219-225.	1.7	43
185	The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging. NeuroImage, 2021, 235, 117996.	2.1	43
186	Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. Journal of Neurophysiology, 2018, 119, 904-920.	0.9	42
187	Estimating average single-neuron visual receptive field sizes by fMRI. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6425-6434.	3.3	42
188	The Effect of Labeling Parameters on Perfusion-Based fMRI in Nonhuman Primates. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 640-652.	2.4	40
189	Category-selective phase coding in the superior temporal sulcus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19438-19443.	3.3	40
190	Ultrasmall Nanoplatforms as Calciumâ€Responsive Contrast Agents for Magnetic Resonance Imaging. Small, 2015, 11, 4900-4909.	5.2	40
191	Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus. Journal of Neuroscience, 2019, 39, 434-444.	1.7	40
192	Robust controlled functional MRI in alert monkeys at high magnetic field: Effects of jaw and body movements. NeuroImage, 2007, 36, 550-570.	2.1	39
193	Integration of EEG source imaging and fMRI during continuous viewing of natural movies. Magnetic Resonance Imaging, 2010, 28, 1135-1142.	1.0	39
194	Bold claims for optogenetics. Nature, 2010, 468, E3-E4.	13.7	39
195	Vascularization of Cytochrome Oxidase-Rich Blobs in the Primary Visual Cortex of Squirrel and Macaque Monkeys. Journal of Neuroscience, 2011, 31, 1246-1253.	1.7	39
196	Visual processing in the ketamine-anesthetized monkey. Experimental Brain Research, 2002, 143, 359-372.	0.7	37
197	Context-dependent perceptual modulation of single neurons in primate visual cortex. Proceedings of the United States of America, 2007, 104, 5620-5625.	3.3	37
198	A smart ¹⁹ F and ¹ H MRI probe with selfâ€immolative linker as a versatile tool for detection of enzymes. Contrast Media and Molecular Imaging, 2012, 7, 478-483.	0.4	37

#	Article	IF	CITATIONS
199	Early detection and monitoring of cerebral ischemia using calcium-responsive MRI probes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20666-20671.	3.3	37
200	Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magnetic Resonance Imaging, 2009, 27, 1065-1073.	1.0	36
201	Discrimination Strategies of Humans and Rhesus Monkeys for Complex Visual Displays. Current Biology, 2006, 16, 814-820.	1.8	35
202	Simultaneous recording of neuronal signals and functional NMR imaging. Magnetic Resonance Imaging, 2007, 25, 760-774.	1.0	35
203	Neurovascular uncoupling: Much ado about nothing. Frontiers in Neuroenergetics, 2010, 2, .	5.3	35
204	Temporal Jitter of the BOLD Signal Reveals a Reliable Initial Dip and Improved Spatial Resolution. Current Biology, 2013, 23, 2146-2150.	1.8	35
205	Different forms of effective connectivity in primate frontotemporal pathways. Nature Communications, 2015, 6, 6000.	5.8	35
206	Decoding internally generated transitions of conscious contents in the prefrontal cortex without subjective reports. Nature Communications, 2022, 13, 1535.	5.8	34
207	The Effect of Image Scrambling on Visual Cortical BOLD Activity in the Anesthetized Monkey. NeuroImage, 2002, 16, 607-616.	2.1	33
208	fMRI of the temporal lobe of the awake monkey at 7ÂT. NeuroImage, 2008, 39, 1081-1093.	2.1	33
209	Neural substrates of sexual arousal are not sex dependent. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15671-15676.	3.3	33
210	Functional magnetic resonance imaging of awake behaving macaques. Methods, 2010, 50, 178-188.	1.9	32
211	Sensory systems. Current Opinion in Neurobiology, 2000, 10, 631-641.	2.0	31
212	High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey. Magnetic Resonance Imaging, 2004, 22, 1361-1372.	1.0	31
213	Color Blobs in Cortical Areas V1 and V2 of the New World Monkey Callithrix jacchus, Revealed by Non-Differential Optical Imaging. Journal of Neuroscience, 2012, 32, 7881-7894.	1.7	31
214	Pharmacological MRI combined with electrophysiology in non-human primates: Effects of Lidocaine on primary visual cortex. Neurolmage, 2008, 40, 590-600.	2.1	30
215	The Thatcher illusion in humans and monkeys. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2973-2981.	1.2	30
216	Dissecting the Synapse- and Frequency-Dependent Network Mechanisms of InÂVivo Hippocampal Sharp Wave-Ripples. Neuron, 2018, 100, 1224-1240.e13.	3.8	30

#	Article	IF	CITATIONS
217	Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature, 2021, 589, 96-102.	13.7	30
218	Development of visually evoked cortical activity in infant macaque monkeys studied longitudinally with fMRI. Magnetic Resonance Imaging, 2006, 24, 359-366.	1.0	29
219	On the use of information theory for the analysis of the relationship between neural and imaging signals. Magnetic Resonance Imaging, 2008, 26, 1015-1025.	1.0	29
220	Is the frontal lobe involved in conscious perception?. Frontiers in Psychology, 2014, 5, 1063.	1.1	29
221	Investigation of a Calcium-Responsive Contrast Agent in Cellular Model Systems: Feasibility for Use as a Smart Molecular Probe in Functional MRI. ACS Chemical Neuroscience, 2014, 5, 360-369.	1.7	29
222	Gd3+-Based Magnetic Resonance Imaging Contrast Agent Responsive to Zn2+. Inorganic Chemistry, 2015, 54, 10342-10350.	1.9	29
223	Functional MR imaging in the awake monkey: effects of motion on dynamic off-resonance and processing strategies. Magnetic Resonance Imaging, 2007, 25, 869-882.	1.0	28
224	Binocular rivalry: A time dependence of eye and stimulus contributions. Journal of Vision, 2010, 10, 3-3.	0.1	28
225	Subjective visual perception: from local processing to emergent phenomena of brain activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130534.	1.8	28
226	The minimum motion technique applied to determine isoluminance in psychophysical experiments with monkeys. Vision Research, 1990, 30, 829-838.	0.7	27
227	In Vivo Characterization of a Smart MRI Agent That Displays an Inverse Response to Calcium Concentration. ACS Chemical Neuroscience, 2010, 1, 819-828.	1.7	27
228	Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys. Magnetic Resonance Imaging, 2010, 28, 1183-1191.	1.0	26
229	Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1. Journal of Neurophysiology, 2011, 105, 757-778.	0.9	25
230	Visual cortex organisation in a macaque monkey with macular degeneration. European Journal of Neuroscience, 2013, 38, 3456-3464.	1.2	25
231	Tracing of noradrenergic projections using manganese-enhanced MRI. NeuroImage, 2012, 59, 3252-3265.	2.1	24
232	Temporal frequency and contrast tagging bias the type of competition in interocular switch rivalry. Vision Research, 2007, 47, 532-543.	0.7	23
233	Relationship of the BOLD Signal with VEP for Ultrashort Duration Visual Stimuli (0.1 to 5 ms) in Humans. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 449-458.	2.4	23
234	Distinct ensembles in the noradrenergic locus coeruleus are associated with diverse cortical states. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116507119.	3.3	23

#	Article	IF	CITATIONS
235	Simultaneous EEG and fMRI in the macaque monkey at 4.7 Tesla. Magnetic Resonance Imaging, 2006, 24, 335-342.	1.0	22
236	Quantification of cerebral blood flow in nonhuman primates using arterial spin labeling and a two-compartment model. Magnetic Resonance Imaging, 2007, 25, 775-783.	1.0	22
237	Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition. Frontiers in Human Neuroscience, 2011, 5, 145.	1.0	22
238	Intracortical recordings and fMRI: An attempt to study operational modules and networks simultaneously. NeuroImage, 2012, 62, 962-969.	2.1	22
239	Improved decoding of neural activity from fMRI signals using non-separable spatiotemporal deconvolutions. NeuroImage, 2012, 61, 1031-1042.	2.1	22
240	Desynchronization and rebound of beta oscillations during conscious and unconscious local neuronal processing in the macaque lateral prefrontal cortex. Frontiers in Psychology, 2013, 4, 603.	1.1	22
241	Diffusion properties of conventional and calciumâ€sensitive MRI contrast agents in the rat cerebral cortex. Contrast Media and Molecular Imaging, 2014, 9, 71-82.	0.4	22
242	Region and volume dependencies in spectral line width assessed by 1H 2D MR chemical shift imaging in the monkey brain at 7 T. Magnetic Resonance Imaging, 2004, 22, 1373-1383.	1.0	21
243	Macrocyclic Gd ³⁺ Complexes with Pendant Crown Ethers Designed for Binding Zwitterionic Neurotransmitters. Chemistry - A European Journal, 2015, 21, 11226-11237.	1.7	21
244	Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas. NeuroImage, 2015, 120, 176-190.	2.1	21
245	Ratiometric Method for Rapid Monitoring of Biological Processes Using Bioresponsive MRI Contrast Agents. ACS Sensors, 2016, 1, 483-487.	4.0	21
246	Object recognition: Holistic representations in the monkey brain. Spatial Vision, 2000, 13, 165-178.	1.4	20
247	Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study. Frontiers in Neural Circuits, 2016, 10, 51.	1.4	20
248	Innovative Design of Ca-Sensitive Paramagnetic Liposomes Results in an Unprecedented Increase in Longitudinal Relaxivity. Biomacromolecules, 2016, 17, 1303-1311.	2.6	20
249	Dopamine Is Signaled by Mid-frequency Oscillations and Boosts Output Layers Visual Information in Visual Cortex. Current Biology, 2018, 28, 224-235.e5.	1.8	20
250	Grouping and segmentation in binocular rivalry. Vision Research, 2004, 44, 1675-1692.	0.7	19
251	Synthesis and characterization of pH-sensitive, biotinylated MRI contrast agents and their conjugates with avidin. Organic and Biomolecular Chemistry, 2013, 11, 1294-1305.	1.5	19
252	Neural-Event-Triggered fMRI of large-scale neural networks. Current Opinion in Neurobiology, 2015, 31, 214-222.	2.0	19

#	Article	IF	CITATIONS
253	The activity of thalamic nucleus reuniens is critical for memory retrieval, but not essential for the early phase of "off-line―consolidation. Learning and Memory, 2018, 25, 129-137.	0.5	19
254	Arylâ€Phosphonate Lanthanide Complexes and Their Fluorinated Derivatives: Investigation of Their Unusual Relaxometric Behavior and Potential Application as Dual Frequency ¹ H/ ¹⁹ Fâ€MRI Probes. Chemistry - A European Journal, 2013, 19, 11644-11660.	1.7	18
255	Binocular Flash Suppression in the Primary Visual Cortex of Anesthetized and Awake Macaques. PLoS ONE, 2014, 9, e107628.	1.1	18
256	Structure-related variable responses of calcium sensitive MRI probes. Organic and Biomolecular Chemistry, 2011, 9, 5816.	1.5	17
257	Optimal band separation of extracellular field potentials. Journal of Neuroscience Methods, 2012, 210, 66-78.	1.3	17
258	Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates. NeuroImage, 2015, 120, 394-399.	2.1	17
259	Influence of Calcium-Induced Aggregation on the Sensitivity of Aminobis(methylenephosphonate)-Containing Potential MRI Contrast Agents. Inorganic Chemistry, 2011, 50, 6472-6481.	1.9	16
260	New Calciumâ€5elective Smart Contrast Agents for Magnetic Resonance Imaging. Chemistry - A European Journal, 2013, 19, 18011-18026.	1.7	16
261	Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3539-E3548.	3.3	16
262	Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12073-E12082.	3.3	16
263	Synchronous spiking associated with prefrontal high γ oscillations evokes a 5-Hz rhythmic modulation of spiking in locus coeruleus. Journal of Neurophysiology, 2021, 125, 1191-1201.	0.9	16
264	Modulation of Prefrontal Cortex Slow Oscillations by Phasic Activation of the Locus Coeruleus. Neuroscience, 2021, 453, 268-279.	1.1	16
265	The role of sub-second neural events in spontaneous brain activity. Current Opinion in Neurobiology, 2015, 32, 24-30.	2.0	15
266	Rewiring the adult brain (Reply). Nature, 2005, 438, E3-E4.	13.7	14
267	High-resolution1H chemical shift imaging in the monkey visual cortex. Magnetic Resonance in Medicine, 2005, 54, 1541-1546.	1.9	14
268	-specific responses to faces and objects in primate auditory cortex. Frontiers in Systems Neuroscience, 2008, 1, 2.	1.2	14
269	Frontoparietal activity with minimal decision and control in the awake macaque at 7 T. Magnetic Resonance Imaging, 2010, 28, 1120-1128.	1.0	14
270	Testing methodologies for the nonlinear analysis of causal relationships in neurovascular coupling. Magnetic Resonance Imaging, 2010, 28, 1113-1119.	1.0	14

#	Article	IF	CITATIONS
271	Cholinergic control of visual categorization in macaques. Frontiers in Behavioral Neuroscience, 2011, 5, 73.	1.0	14
272	Investigating static nonlinearities in neurovascular coupling. Magnetic Resonance Imaging, 2011, 29, 1358-1364.	1.0	14
273	Measuring multiple neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual microdialysis sampling and capillary hydrophilic interaction chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 402, 2545-2554.	1.9	14
274	Morphing rhesus monkey vocalizations. Journal of Neuroscience Methods, 2008, 170, 45-55.	1.3	13
275	esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex. Magnetic Resonance Imaging, 2011, 29, 1374-1381.	1.0	13
276	Detailed functional and structural characterization of a macular lesion in a rhesus macaque. Documenta Ophthalmologica, 2012, 125, 179-194.	1.0	13
277	Effects of lactate on the early visual cortex of non-human primates, investigated by pharmaco-MRI and neurochemical analysis. NeuroImage, 2012, 61, 98-105.	2.1	13
278	Systemic neurotransmitter responses to clinically approved and experimental neuropsychiatric drugs. Nature Communications, 2018, 9, 4699.	5.8	13
279	The effect of artifacts on dependence measurement in fMRI. Magnetic Resonance Imaging, 2006, 24, 401-409.	1.0	12
280	BOLD sensitivity to cortical activation induced by microstimulation: comparison to visual stimulation. Magnetic Resonance Imaging, 2007, 25, 754-759.	1.0	12
281	A novel functional magnetic resonance imaging compatible search-coil eye-tracking system. Magnetic Resonance Imaging, 2007, 25, 913-922.	1.0	12
282	Organization of area hV5/MT+ in subjects with homonymous visual field defects. NeuroImage, 2019, 190, 254-268.	2.1	12
283	1H-MRS of the macaque monkey primary visual cortex at 7 T: strategies and pitfalls of shimming at the brain surface. Magnetic Resonance Imaging, 2007, 25, 902-912.	1.0	11
284	Decoding a bistable percept with integrated time–frequency representation of single-trial local field potential. Journal of Neural Engineering, 2008, 5, 433-442.	1.8	11
285	Local field potentials, BOLD and spiking activity – relationships and physiological mechanisms. Nature Precedings, 2010, , .	0.1	11
286	Dissociable Effects of Natural Image Structure and Color on LFP and Spiking Activity in the Lateral Prefrontal Cortex and Extrastriate Visual Area V4. Journal of Neuroscience, 2011, 31, 10215-10227.	1.7	11
287	Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex. Communications Biology, 2018, 1, 215.	2.0	11
288	Toward MRI and Optical Detection of Zwitterionic Neurotransmitters: Near-Infrared Luminescent and Magnetic Properties of Macrocyclic Lanthanide(III) Complexes Appended with a Crown Ether and a Benzophenone Chromophore. Inorganic Chemistry, 2019, 58, 13619-13630.	1.9	11

#	Article	IF	CITATIONS
289	Computational neuroscience: a frontier of the 21st century. National Science Review, 2020, 7, 1418-1422.	4.6	10
290	Development of visual cortical function in infant macaques: A BOLD fMRI study. PLoS ONE, 2017, 12, e0187942.	1.1	10
291	Is movement perception color blind?. Current Biology, 1991, 1, 298-300.	1.8	9
292	Flat map areal topography in Macaca mulatta based on combined MRI and histology. Magnetic Resonance Imaging, 2010, 28, 1159-1164.	1.0	9
293	A Common Neurodynamical Mechanism Could Mediate Externally Induced and Intrinsically Generated Transitions in Visual Awareness. PLoS ONE, 2013, 8, e53833.	1.1	9
294	Atomoxetine accelerates attentional set shifting without affecting learning rate in the rat. Psychopharmacology, 2015, 232, 3697-3707.	1.5	9
295	Relaxometric, Thermodynamic and Kinetic Studies of Lanthanide(III) Complexes of DO3Aâ€Based Propylphosphonates. European Journal of Inorganic Chemistry, 2009, 2009, 3298-3306.	1.0	8
296	Improved Neuronal Tract Tracing with Stable Biocytin-Derived Neuroimaging Agents. ACS Chemical Neuroscience, 2010, 1, 129-138.	1.7	8
297	Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies. ACS Chemical Neuroscience, 2011, 2, 578-587.	1.7	8
298	Activation of SC during electrical stimulation of LGN: retinal antidromic stimulation or corticocollicular activation?. Magnetic Resonance Imaging, 2011, 29, 1351-1357.	1.0	8
299	An Analysis Approach for High-Field fMRI Data from Awake Non-Human Primates. PLoS ONE, 2012, 7, e29697.	1.1	8
300	Intensive longitudinal characterization of multidimensional biobehavioral dynamics in laboratory rats. Cell Reports, 2021, 35, 108987.	2.9	8
301	Second-Order Relational Manipulations Affect Both Humans and Monkeys. PLoS ONE, 2011, 6, e25793.	1.1	8
302	Mass spectrometry-based neurochemical analysis: perspectives for primate research. Expert Review of Proteomics, 2008, 5, 641-652.	1.3	7
303	Extraction of Bistable-Percept-Related Features From Local Field Potential by Integration of Local Regression and Common Spatial Patterns. IEEE Transactions on Biomedical Engineering, 2009, 56, 2095-2103.	2.5	7
304	A straightforward and convenient pathway for the synthesis of functional bismacrocyclic ligands. Tetrahedron Letters, 2011, 52, 1619-1622.	0.7	7
305	A Potential Role of Auditory Induced Modulations in Primary Visual Cortex. Multisensory Research, 2015, 28, 331-349.	0.6	7
306	Three Water Restriction Schedules Used in Rodent Behavioral Tasks Transiently Impair Growth and Differentially Evoke a Stress Hormone Response without Causing Dehydration. ENeuro, 2021, 8, ENEURO.0424-21.2021.	0.9	7

#	Article	IF	CITATIONS
307	Relaxation-Based Feature Selection for Single-Trial Decoding of Bistable Perception. IEEE Transactions on Biomedical Engineering, 2009, 56, 101-110.	2.5	6
308	Multimodal contrast agents for inÂvivo neuroanatomical analysis of monosynaptic connections. Biomaterials, 2013, 34, 7135-7142.	5.7	6
309	Realignment strategies for awake-monkey fMRI data. Magnetic Resonance Imaging, 2011, 29, 1390-1400.	1.0	5
310	Scene Regularity Interacts With Individual Biases to Modulate Perceptual Stability. Frontiers in Neuroscience, 2019, 13, 523.	1.4	5
311	Phasic activation of the locus coeruleus attenuates the acoustic startle response by increasing cortical arousal. Scientific Reports, 2021, 11, 1409.	1.6	5
312	Vision: Stimulating Your Attention. Current Biology, 2006, 16, R581-R583.	1.8	4
313	Vision: A Window into Consciousness. Scientific American, 2006, 16, 4-11.	1.0	4
314	Multimodal vessel mapping for precise large area alignment of functional optical imaging data to neuroanatomical preparations in marmosets. Journal of Neuroscience Methods, 2011, 201, 159-172.	1.3	4
315	Synthesis and Characterization of a Biotinylated Multivalent Targeted Contrast Agent. ChemPlusChem, 2015, 80, 612-622.	1.3	4
316	Perspective-Taking in Blindness: An Event- Related Brain Potentials Study With the Continuous Wavelet Transform. IEEE Access, 2020, 8, 76657-76670.	2.6	4
317	See and grasp. Nature, 1998, 395, 444-445.	13.7	3
318	Magneticâ€Fieldâ€Dependent ¹ H Relaxivity Behavior of Biotin/Avidinâ€Based Magnetic Resonance Imaging Probes. ChemPlusChem, 2012, 77, 758-769.	1.3	3
319	Development of tube tetrodes and a multi-tetrode drive for deep structure electrophysiological recordings in the macaque brain. Journal of Neuroscience Methods, 2013, 216, 43-48.	1.3	3
320	Spatiotemporal Neural Integration for Bistable Perception in a Response-Time Structure-From-Motion Task. IEEE Transactions on Biomedical Engineering, 2009, 56, 2937-2948.	2.5	2
321	Multisensory Influences on Auditory Processing. Frontiers in Neuroscience, 2011, , 99-114.	0.0	2
322	Different LFP frequency bands convey complementary information about the BOLD signal. BMC Neuroscience, 2011, 12, .	0.8	2
323	Synthesis and in Vitro Evaluation of a Biotinylated Dextran-Derived Probe for Molecular Imaging. ACS Chemical Neuroscience, 2012, 3, 268-273.	1.7	2
324	Responses of Neurons in Lateral Intraparietal Area Depend on Stimulus-Associated Reward During Binocular Flash Suppression. Frontiers in Systems Neuroscience, 2019, 13, 9.	1.2	2

#	Article	IF	CITATIONS
325	Neurochemical underpinning of hemodynamic response to neuropsychiatric drugs: A meta- and cluster analysis of preclinical studies. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 874-885.	2.4	2
326	From Univariate to Multivariate Coupling Between Continuous Signals and Point Processes: A Mathematical Framework. Neural Computation, 2021, 33, 1751-1817.	1.3	2
327	Local Field Potential, Relationship to BOLD Signal. , 2014, , 1-11.		2
328	Francis Crick 1916–2004. Nature Neuroscience, 2004, 7, 1027-1028.	7.1	1
329	Reply to "Motion processing in macaque V4". Nature Neuroscience, 2005, 8, 1125-1125.	7.1	1
330	Cortical processing of vocal sounds in primates. Handbook of Behavioral Neuroscience, 2010, 19, 135-147.	0.7	1
331	Pharmaco-Based fMRI and Neurophysiology in Non-Human Primates. Neuromethods, 2017, , 37-66.	0.2	1
332	The Electrophysiological Background of the fMRI Signal. , 2010, , 23-33.		1
333	Perception and the Brain. On Thinking, 2010, , 161-175.	0.5	1
334	Non-separable Spatiotemporal Brain Hemodynamics Contain Neural Information. Lecture Notes in Computer Science, 2012, , 140-147.	1.0	1
335	Macaque Area V2/V3 Reorganization Following Homonymous Retinal Lesions. Frontiers in Neuroscience, 2022, 16, 757091.	1.4	1
336	Psychophysical correlates of physiological functions. Behavioral and Brain Sciences, 1988, 11, 308-309.	0.4	0
337	Functional magnetic resonance imaging. , 0, , 410-469.		0
338	Reply to Poeppl et al.: Controlling for false positive rates is critical for accurate and consistent interpretation of findings. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11206-11206.	3.3	0
339	Imaging Cross-Modal Influences in Auditory Cortex. , 2010, , 123-137.		0
340	The Electrophysiological Background of the fMRI Signal. , 2013, , 25-36.		0
341	Physiological Foundations ofÂNeural Signals. , 2013, , 3-14.		0
342	<i>Response</i> : "Subjective Perception". Science, 1990, 247, 727-727.	6.0	0

#	Article	IF	CITATIONS
343	Comparative neuroanatomy of occipital white matter tracts in human and macaque. Journal of Vision, 2017, 17, 589.	0.1	О
344	Mapping Optogenetically Driven Single-Vessel fMRI with Concurrent Neuronal Calcium Recordings in the Rat Hippocampus. SSRN Electronic Journal, 0, , .	0.4	0
345	Mechanisms of the non-linear interactions between the neuronal and neurotransmitter systems explained by causal whole-brain modeling. , 2019, , .		0
346	The Electrophysiological Background of the fMRI Signal. , 2020, , 15-27.		0
347	Local Field Potential, Relationship to BOLD Signal. , 2022, , 1852-1860.		0