
Filip E Du Prez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1305963/publications.pdf Version: 2024-02-01

FILID F DIL DDF7

#	Article	IF	CITATIONS
1	Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7, 30-38.	7.4	1,115
2	Vinylogous Urethane Vitrimers. Advanced Functional Materials, 2015, 25, 2451-2457.	14.9	763
3	"Clicking―Polymers or Just Efficient Linking: What Is the Difference?. Angewandte Chemie - International Edition, 2011, 50, 60-62.	13.8	583
4	Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Progress in Polymer Science, 2012, 37, 365-405.	24.7	426
5	Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polymer Chemistry, 2019, 10, 6091-6108.	3.9	399
6	Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8, 14857.	12.8	365
7	Vitrimers: directing chemical reactivity to control material properties. Chemical Science, 2020, 11, 4855-4870.	7.4	312
8	Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nature Chemistry, 2014, 6, 815-821.	13.6	285
9	Chemistry of Crosslinking Processes for Selfâ€Healing Polymers. Macromolecular Rapid Communications, 2013, 34, 290-309.	3.9	258
10	Phase behaviour of poly(N -vinyl caprolactam) in water. Polymer, 2000, 41, 8597-8602.	3.8	240
11	Limitations of radical thiolâ€ene reactions for polymer–polymer conjugation. Journal of Polymer Science Part A, 2010, 48, 1699-1713.	2.3	235
12	"Click―Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules, 2015, 48, 2-14.	4.8	226
13	Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts. ACS Macro Letters, 2017, 6, 930-934.	4.8	207
14	One-Pot Multistep Reactions Based on Thiolactones: Extending the Realm of Thiolâ^'Ene Chemistry in Polymer Synthesis. Journal of the American Chemical Society, 2011, 133, 1678-1681.	13.7	206
15	Multifunctionalized Sequenceâ€Defined Oligomers from a Single Building Block. Angewandte Chemie - International Edition, 2013, 52, 13261-13264.	13.8	198
16	One-Pot Thermo-Remendable Shape Memory Polyurethanes. Macromolecules, 2014, 47, 2010-2018.	4.8	194
17	Fluorinated Vitrimer Elastomers with a Dual Temperature Response. Journal of the American Chemical Society, 2018, 140, 13272-13284.	13.7	181
18	Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Progress in Polymer Science, 2006, 31, 671-722.	24.7	176

#	Article	IF	CITATIONS
19	Additive-Free Clicking for Polymer Functionalization and Coupling by Tetrazine–Norbornene Chemistry. Journal of the American Chemical Society, 2011, 133, 13828-13831.	13.7	175
20	Fifteen chemistries for autonomous external self-healing polymers and composites. Progress in Polymer Science, 2015, 49-50, 121-153.	24.7	173
21	Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification As a Versatile Dynamic Cross-Linking Chemistry. Journal of the American Chemical Society, 2019, 141, 15277-15287.	13.7	172
22	New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer, 2003, 44, 2255-2261.	3.8	170
23	Vinylogous Urea Vitrimers and Their Application in Fiber Reinforced Composites. Macromolecules, 2018, 51, 2054-2064.	4.8	170
24	Carbocationic polymerizations. Progress in Polymer Science, 2007, 32, 220-246.	24.7	160
25	Triazolinediones as Highly Enabling Synthetic Tools. Chemical Reviews, 2016, 116, 3919-3974.	47.7	160
26	Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and "Click Chemistry―Type Postpolymerization Modification. Macromolecules, 2004, 37, 9308-9313.	4.8	158
27	Fast processing of highly crosslinked, low-viscosity vitrimers. Materials Horizons, 2020, 7, 104-110.	12.2	152
28	Automated Synthesis of Monodisperse Oligomers, Featuring Sequence Control and Tailored Functionalization. Journal of the American Chemical Society, 2016, 138, 14182-14185.	13.7	151
29	Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer, 2005, 46, 7118-7131.	3.8	147
30	One-pot multi-step reactions based on thiolactone chemistry: A powerful synthetic tool in polymer science. European Polymer Journal, 2015, 62, 247-272.	5.4	140
31	Multifunctional sequence-defined macromolecules for chemical data storage. Nature Communications, 2018, 9, 4451.	12.8	137
32	Polydimethylsiloxane quenchable vitrimers. Polymer Chemistry, 2017, 8, 6590-6593.	3.9	136
33	Internal catalysis for dynamic covalent chemistry applications and polymer science. Chemical Society Reviews, 2020, 49, 8425-8438.	38.1	128
34	"Click―Chemistry as a Promising Tool for Side-Chain Functionalization of Polyurethanes. Macromolecules, 2008, 41, 4622-4630.	4.8	124
35	Heterogeneous azide–alkyne click chemistry: towards metal-free end products. Chemical Science, 2012, 3, 959-966.	7.4	124
36	Anthracene-containing polymers toward high-end applications. Progress in Polymer Science, 2018, 82, 92-119.	24.7	120

#	Article	IF	CITATIONS
37	Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol–yne Crossâ€Linking. Angewandte Chemie - International Edition, 2020, 59, 3609-3617.	13.8	118
38	Solvent-Resistant Nanofiltration Membranes Based on Multilayered Polyelectrolyte Complexes. Chemistry of Materials, 2008, 20, 3876-3883.	6.7	114
39	Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance. Materials Horizons, 2017, 4, 1041-1053.	12.2	111
40	Influence of Poly(ethylene oxide) Grafts on Kinetics of LCST Behavior in Aqueous Poly(N-vinylcaprolactam) Solutions and Networks Studied by Modulated Temperature DSC. Macromolecules, 2004, 37, 1054-1061.	4.8	106
41	A Shape-Recovery Polymer Coating for the Corrosion Protection of Metallic Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 175-183.	8.0	106
42	Cryogels from poly(2-hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds. Soft Matter, 2007, 3, 1176.	2.7	105
43	Polytetrahydrofuran/Clay Nanocomposites by In Situ Polymerization and "Click―Chemistry Processes. Macromolecules, 2008, 41, 6035-6040.	4.8	105
44	One-Pot Double Modification of p(NIPAAm): A Tool for Designing Tailor-Made Multiresponsive Polymers. ACS Macro Letters, 2013, 2, 539-543.	4.8	103
45	Synthesis and characterization of polymer/clay nanocomposites by intercalated chain transfer agent. European Polymer Journal, 2008, 44, 1949-1954.	5.4	102
46	Fabrication of Porous "Clickable―Polymer Beads and Rods through Generation of High Internal Phase Emulsion (HIPE) Droplets in a Simple Microfluidic Device. Macromolecules, 2009, 42, 9289-9294.	4.8	101
47	Kinetic comparison of 13 homogeneous thiol–X reactions. Polymer Chemistry, 2013, 4, 5527.	3.9	99
48	Thiol-ene and thiol-yne chemistry in microfluidics: a straightforward method towards macroporous and nonporous functional polymer beads. Polymer Chemistry, 2010, 1, 685.	3.9	98
49	Biodegradable microcapsules designed via â€ [~] click' chemistry. Chemical Communications, 2008, , 190-192.	4.1	97
50	Toward Functional Polyester Building Blocks from Renewable Glycolaldehyde with Sn Cascade Catalysis. ACS Catalysis, 2013, 3, 1786-1800.	11.2	97
51	Autonomous Selfâ€Healing of Epoxy Thermosets with Thiolâ€Isocyanate Chemistry. Advanced Functional Materials, 2014, 24, 5575-5583.	14.9	92
52	Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Times. Macromolecules, 2020, 53, 2485-2495.	4.8	92
53	Linear Poly(ethylene imine)s by Acidic Hydrolysis of Poly(2-oxazoline)s: Kinetic Screening, Thermal Properties, and Temperature-Induced Solubility Transitions. Macromolecules, 2010, 43, 927-933.	4.8	91
54	Step-growth polymerization and â€~click' chemistry: The oldest polymers rejuvenated. Polymer, 2009, 50, 3877-3886.	3.8	89

#	Article	IF	CITATIONS
55	One-pot, additive-free preparation of functionalized polyurethanes via amine–thiol–ene conjugation. Polymer Chemistry, 2013, 4, 2449.	3.9	89
56	Click and Clickâ€Inspired Chemistry for the Design of Sequence ontrolled Polymers. Macromolecular Rapid Communications, 2017, 38, 1700469.	3.9	89
57	Rewritable Polymer Brush Micropatterns Grafted by Triazolinedione Click Chemistry. Angewandte Chemie - International Edition, 2015, 54, 13126-13129.	13.8	86
58	"Sandwich―Microcontact Printing as a Mild Route Towards Monodisperse Janus Particles with Tailored Bifunctionality. Advanced Materials, 2011, 23, 79-83.	21.0	84
59	Degradable Multilayer Films and Hollow Capsules via a †̃Click' Strategy. Macromolecular Rapid Communications, 2008, 29, 1111-1118.	3.9	82
60	New poly(acrylic acid) containing segmented copolymer structures by combination of "click― chemistry and atom transfer radical polymerization. Reactive and Functional Polymers, 2007, 67, 1168-1180.	4.1	81
61	Sustainable thermoplastic elastomers derived from plant oil and their "click-coupling―via TAD chemistry. Green Chemistry, 2015, 17, 3806-3818.	9.0	79
62	Fast Healing of Polyurethane Thermosets Using Reversible Triazolinedione Chemistry and Shape-Memory. Macromolecules, 2018, 51, 3405-3414.	4.8	79
63	Double modular modification of thiolactone-containing polymers: towards polythiols and derived structures. Polymer Chemistry, 2012, 3, 1007.	3.9	78
64	Kinetic Modeling of Radical Thiol–Ene Chemistry for Macromolecular Design: Importance of Side Reactions and Diffusional Limitations. Macromolecules, 2013, 46, 1732-1742.	4.8	78
65	Novel synthetic strategy toward shape memory polyurethanes with a well-defined switching temperature. Polymer, 2009, 50, 4447-4454.	3.8	77
66	Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer, 2012, 53, 2320-2326.	3.8	76
67	Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. Advanced Science, 2021, 8, 2004038.	11.2	76
68	pH- and thermo-responsive properties of poly(N-vinylcaprolactam-co-acrylic acid) copolymers. Polymer International, 2003, 52, 1605-1610.	3.1	73
69	Influence of the polymer matrix on the viscoelastic behaviour of vitrimers. Polymer Chemistry, 2020, 11, 5377-5385.	3.9	73
70	Straightforward synthesis of functionalized cyclic polymers in high yield via RAFT and thiolactone–disulfide chemistry. Polymer Chemistry, 2013, 4, 184-193.	3.9	71
71	Redoxâ€Responsive Degradable PEG Cryogels as Potential Cell Scaffolds in Tissue Engineering. Macromolecular Bioscience, 2012, 12, 383-394.	4.1	70
72	Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks. Journal of the American Chemical Society, 2021, 143, 9140-9150.	13.7	70

#	Article	IF	CITATIONS
73	Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes. Journal of Membrane Science, 2006, 274, 173-182.	8.2	69
74	Introduction of silica into thermo-responsive poly(N-isopropyl acrylamide) hydrogels: A novel approach to improve response rates. Polymer, 2005, 46, 9851-9862.	3.8	68
75	Diversely Substituted Polyamide Structures through Thiol–Ene Polymerization of Renewable Thiolactone Building Blocks. Macromolecules, 2014, 47, 61-69.	4.8	68
76	RAFT Polymerization of 1-Ethoxyethyl Acrylate:  A Novel Route toward Near-Monodisperse Poly(acrylic) Tj I	ETQq0 0 0 r 4.8	gBT /Overlock
77	Polymer networks containing crystallizable poly(octadecyl vinyl ether) segments for shape-memory materials. Macromolecular Rapid Communications, 1999, 20, 251-255.	3.9	66
78	Design of Mixed PEO/PAA Brushes with Switchable Properties Toward Protein Adsorption. Biomacromolecules, 2013, 14, 215-225.	5.4	66
79	Protected thiol strategies in macromolecular design. Progress in Polymer Science, 2017, 64, 76-113.	24.7	66
80	Thermoplastic polyacetals: chemistry from the past for a sustainable future?. Polymer Chemistry, 2019, 10, 9-33.	3.9	66
81	Synthesis of poly(tetrahydrofuran)-b-polystyrene block copolymers from dual initiators for cationic ring-opening polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2003, 41, 3206-3217.	2.3	63
82	Light-Stabilized Dynamic Materials. Journal of the American Chemical Society, 2019, 141, 12329-12337.	13.7	63
83	Biomass Approach toward Robust, Sustainable, Multiple-Shape-Memory Materials. ACS Macro Letters, 2016, 5, 602-606.	4.8	62
84	Lactone End-Capped Poly(ethylene oxide) as a New Building Block for Biomaterials. Macromolecules, 2004, 37, 9738-9745.	4.8	60
85	Block Copolymers of Methyl Vinyl Ether and Isobutyl Vinyl Ether With Thermo-Adjustable Amphiphilic Properties. Macromolecular Chemistry and Physics, 2003, 204, 2090-2098.	2.2	59
86	Atom Transfer Radical Polymerization of 1-Ethoxyethyl (Meth)acrylate:Â Facile Route toward Near-Monodisperse Poly((meth)acrylic acid). Macromolecules, 2004, 37, 6673-6675.	4.8	59
87	Combining "click―chemistry and stepâ€growth polymerization for the generation of highly functionalized polyesters. Journal of Polymer Science Part A, 2008, 46, 6552-6564.	2.3	59
88	Anthracene-Based Thiol–Ene Networks with Thermo-Degradable and Photo-Reversible Properties. Macromolecules, 2017, 50, 1930-1938.	4.8	59
89	Filler reinforced polydimethylsiloxane-based vitrimers. Polymer, 2019, 172, 239-246.	3.8	59
90	Fast Dynamic Siloxane Exchange Mechanism for Reshapable Vitrimer Composites. Journal of the American Chemical Society, 2022, 144, 12280-12289.	13.7	58

#	Article	IF	CITATIONS
91	Metal-Free Functionalization of Linear Polyurethanes by Thiol-Maleimide Coupling Reactions. Macromolecules, 2011, 44, 7874-7878.	4.8	57
92	Efficient access to multiâ€arm star block copolymers by a combination of ATRP and RAFTâ€HDA <i>click</i> chemistry. Journal of Polymer Science Part A, 2009, 47, 2207-2213.	2.3	56
93	Segmented network structures for the separation of water/ethanol mixtures by pervaporation. Polymer International, 1998, 46, 117-125.	3.1	55
94	Revealing the nature of thio-click reactions on the solid phase. Chemical Communications, 2011, 47, 4652.	4.1	55
95	Facile Access to an Efficient Solid‣upported Click Catalyst System Based on Poly(ethyleneimine). Macromolecular Rapid Communications, 2009, 30, 34-38.	3.9	54
96	Norbornenyl-Based RAFT Agents for the Preparation of Functional Polymers via Thiol–Ene Chemistry. Macromolecules, 2011, 44, 5619-5630.	4.8	54
97	Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angewandte Chemie - International Edition, 2022, 61, e202113872.	13.8	54
98	Thermo-Responsive and Emulsifying Properties of Poly(N-vinylcaprolactam) Based Graft Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 1217-1225.	2.2	53
99	Design of novel poly(methyl vinyl ether) containing AB and ABC block copolymers by the dual initiator strategy. Polymer, 2005, 46, 8469-8482.	3.8	53
100	Selenolactone as a Building Block toward Dynamic Diselenide-Containing Polymer Architectures with Controllable Topology. ACS Macro Letters, 2017, 6, 89-92.	4.8	53
101	Reprocessing of Covalent Adaptable Polyamide Networks through Internal Catalysis and Ring-Size Effects. Journal of the American Chemical Society, 2021, 143, 15834-15844.	13.7	52
102	Synthesis of Multi(metallo)porphyrin Dendrimers through Nucleophilic Aromatic Substitution onmeso-Pyrimidinyl Substituted Porphyrins. Journal of Organic Chemistry, 2006, 71, 2987-2994.	3.2	51
103	Coated Wire Potentiometric Detection for Capillary Electrophoresis Studied Using Organic Amines, Drugs, and Biogenic Amines. Analytical Chemistry, 2006, 78, 3772-3779.	6.5	51
104	Propagation rate coefficients of isobornyl acrylate, <i>tert</i> â€butyl acrylate and 1â€ethoxyethyl acrylate: A high frequency PLPâ€SEC study. Journal of Polymer Science Part A, 2009, 47, 6641-6654.	2.3	51
105	Tetrazineâ€Norbornene Click Reactions to Functionalize Degradable Polymers Derived from Lactide. Macromolecular Rapid Communications, 2011, 32, 1362-1366.	3.9	51
106	Light scattering and microcalorimetry studies on aqueous solutions of thermo-responsive PVCL-g-PEO copolymers. Polymer, 2003, 44, 6807-6814.	3.8	50
107	pH-Responsive Diblock Copolymers Prepared by the Dual Initiator Strategy. Macromolecules, 2006, 39, 3760-3769.	4.8	50
108	Solvent Effects on Free Radical Polymerization Reactions: The Influence of Water on the Propagation Rate of Acrylamide and Methacrylamide. Macromolecules, 2010, 43, 827-836.	4.8	50

#	Article	IF	CITATIONS
109	Atom Transfer Radical Polymerization of Isobornyl Acrylate: A Kinetic Modeling Study. Macromolecules, 2010, 43, 8766-8781.	4.8	49
110	Design and Use of Organic Nanoparticles Prepared from Star-Shaped Polymers with Reactive End Groups. Journal of the American Chemical Society, 2008, 130, 10802-10811.	13.7	48
111	Poly(butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material. Innovative Food Science and Emerging Technologies, 2012, 15, 81-85.	5.6	48
112	Track etched membranes with thermo-adjustable porosity and separation properties by surface immobilization of poly(-vinylcaprolactam). Journal of Membrane Science, 2005, 256, 64-64.	8.2	47
113	Synthesis and Self-Assembly of Amphiphilic Chiral Poly(amino acid) Star Polymers. Macromolecules, 2010, 43, 5949-5955.	4.8	47
114	From Sequenceâ€Defined Macromolecules to Macromolecular Pin Codes. Advanced Science, 2020, 7, 1903698.	11.2	47
115	100% thiol-functionalized ethylene PMOs prepared by "thiol acid–ene―chemistry. Chemical Communications, 2013, 49, 2344.	4.1	46
116	Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions. Chemical Science, 2017, 8, 3098-3108.	7.4	45
117	Block Copolymers of Vinyl Ethers as Thermo-Responsive Colloidal Stabilizers of Organic Pigments in Aqueous Media. Macromolecular Chemistry and Physics, 2004, 205, 2457-2463.	2.2	44
118	Controlled Synthesis of an ABC Miktoarm Star-Shaped Copolymer by Sequential Ring-Opening Polymerization of Ethylene Oxide, Benzyl β-Malolactonate, and ε-Caprolactone. Macromolecules, 2005, 38, 10650-10657.	4.8	44
119	Star-Shaped Poly(tetrahydrofuran) with Reactive End Groups:  Design, MALDI-TOF Study, and Solution Behavior. Macromolecules, 2006, 39, 528-534.	4.8	44
120	Polymeric ligands as homogeneous, reusable catalyst systems for copper assisted click chemistry. Chemical Communications, 2010, 46, 8719.	4.1	44
121	From plant oils to plant foils: Straightforward functionalization and crosslinking of natural plant oils with triazolinediones. European Polymer Journal, 2015, 65, 286-297.	5.4	44
122	Amphiphilic segmented polymer networks based on poly(2-alkyl-2-oxazoline) and poly(methyl) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 22
123	Thermo-Responsive Organic/Inorganic Hybrid Hydrogels based on Poly(N-vinylcaprolactam). Macromolecular Chemistry and Physics, 2003, 204, 98-103.	2.2	43
124	Solventâ€Resistant Nanofiltration for Product Purification and Catalyst Recovery in Click Chemistry Reactions . Chemistry - A European Journal, 2010, 16, 1061-1067.	3.3	43
125	Polyurea microcapsules with a photocleavable shell: UV-triggered release. Polymer Chemistry, 2013, 4, 763-772.	3.9	43
126	Block, blocky gradient and random copolymers of 2-ethylhexyl acrylate and acrylic acid by atom transfer radical polymerization. Polymer, 2006, 47, 6028-6037.	3.8	42

#	Article	IF	CITATIONS
127	Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innovative Food Science and Emerging Technologies, 2011, 12, 594-599.	5.6	42
128	Bifunctional Janus beads made by "sandwich―microcontact printing using click chemistry. Journal of Materials Chemistry, 2012, 22, 6190.	6.7	42
129	Efficient microencapsulation of a liquid isocyanate with in situ shell functionalization. Polymer Chemistry, 2015, 6, 1159-1170.	3.9	42
130	Rigid Polyurethanes, Polyesters, and Polycarbonates from Renewable Ketal Monomers. Macromolecules, 2017, 50, 5346-5352.	4.8	42
131	Thermoresponsive Properties of Poly(N-vinylcaprolactam)-Poly(ethylene oxide) Aqueous Systems: Solutions and Block Copolymer Networks. Macromolecular Chemistry and Physics, 2001, 202, 1700-1709.	2.2	41
132	Segmented polymer networks based on poly(N-isopropyl acrylamide) and poly(tetrahydrofuran) as polymer membranes with thermo-responsive permeability. Polymer, 2004, 45, 749-757.	3.8	41
133	Renewable sulfur-containing thermoplastics via AB-type thiol-ene polyaddition. European Polymer Journal, 2013, 49, 804-812.	5.4	41
134	Biobased acrylic pressure-sensitive adhesives. Progress in Polymer Science, 2021, 117, 101396.	24.7	41
135	Control of Glycopolymer Nanoparticle Morphology by a Oneâ€Pot, Double Modification Procedure Using Thiolactones. Macromolecular Rapid Communications, 2014, 35, 1128-1134.	3.9	40
136	Biosourced terpenoids for the development of sustainable acrylic pressure-sensitive adhesives <i>via</i> emulsion polymerisation. Green Chemistry, 2020, 22, 4561-4569.	9.0	40
137	Multifunctional Membranes for Solvent Resistant Nanofiltration and Pervaporation Applications Based on Segmented Polymer Networks. Journal of Physical Chemistry B, 2008, 112, 16539-16545.	2.6	39
138	Synthesis of multi-functionalized hydrogels by a thiolactone-based synthetic protocol. Polymer Chemistry, 2014, 5, 5461.	3.9	39
139	Ultrafast Layer-by-Layer Assembly of Thin Organic Films Based on Triazolinedione Click Chemistry. ACS Macro Letters, 2015, 4, 331-334.	4.8	39
140	Sustainable Synthesis of Renewable Terpenoid-Based (Meth)acrylates Using the CHEM21 Green Metrics Toolkit. ACS Sustainable Chemistry and Engineering, 2019, 7, 11633-11639.	6.7	39
141	Digging into the Sequential Space of Thiolactone Precision Polymers: A Combinatorial Strategy to Identify Functional Domains. Angewandte Chemie - International Edition, 2019, 58, 1960-1964.	13.8	39
142	Double neighbouring group participation for ultrafast exchange in phthalate monoester networks. Polymer Chemistry, 2020, 11, 5207-5215.	3.9	39
143	Fast, multi-responsive microgels based on photo-crosslinkable poly(2-(dimethylamino)ethyl) Tj ETQq1 1 0.7843	14 rgBT /C	verlock 10 T
144	Synthesis of poly(isobornyl acrylate) containing copolymers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2008, 46, 1649-1661.	2.3	38

#	Article	IF	CITATIONS
145	Star‣haped Polyacrylates: Highly Functionalized Architectures via CuAAC Click Conjugation. Macromolecular Rapid Communications, 2009, 30, 2049-2055.	3.9	38
146	On-demand click functionalization of polyurethane films and foams. Polymer, 2009, 50, 5362-5367.	3.8	38
147	Association behavior of thermo-responsive block copolymers based on poly(vinyl ethers). Polymer, 2005, 46, 9899-9907.	3.8	37
148	Synthesis and evaluation of 9-substituted anthracenes with potential in reversible polymer systems. Tetrahedron, 2016, 72, 4303-4311.	1.9	37
149	Design of water-soluble block copolymers containing poly(4-vinylpyridine) by atom transfer radical polymerization. European Polymer Journal, 2006, 42, 43-50.	5.4	36
150	Chemically orthogonal trifunctional Janus beads by photochemical "sandwich―microcontact printing. Chemical Communications, 2013, 49, 63-65.	4.1	36
151	Use of Triazolinedione Click Chemistry for Tuning the Mechanical Properties of Electrospun SBS-Fibers. Macromolecules, 2015, 48, 6474-6481.	4.8	36
152	Simultaneous interpenetrating networks of a polyurethane and poly(methyl methacrylate). I. Metastable phase diagrams. Journal of Applied Polymer Science, 1995, 58, 331-346.	2.6	35
153	Comparative Morphological Study of Poly(dioxolane)/Poly(methyl methacrylate) Segmented Networks and Blends by13C Solid-State NMR and Thermal Analysis. Macromolecules, 2002, 35, 3965-3970.	4.8	35
154	Application of thermo-responsive poly(methyl vinyl ether) containing copolymers in combination with ultrasonic treatment for pigment surface modification in pigment dispersions. Polymer, 2007, 48, 2636-2643.	3.8	35
155	Macromolecular Coupling in Seconds of Triazolinedione End-Functionalized Polymers Prepared by RAFT Polymerization. ACS Macro Letters, 2016, 5, 766-771.	4.8	35
156	Highly active, thermoâ€responsive polymeric catalytic system for reuse in aqueous and organic CuAAC reactions. Journal of Polymer Science Part A, 2011, 49, 2878-2885.	2.3	34
157	Controlling thermal reactivity with different colors of light. Nature Communications, 2017, 8, 1869.	12.8	34
158	Poly(thiolactone) homo- and copolymers from maleimide thiolactone: synthesis and functionalization. Polymer Chemistry, 2015, 6, 4240-4251.	3.9	33
159	Sustainable design of vanillin-based vitrimers using vinylogous urethane chemistry. Polymer Chemistry, 2022, 13, 2665-2673.	3.9	33
160	Stereocontrolled, multi-functional sequence-defined oligomers through automated synthesis. Polymer Chemistry, 2020, 11, 4271-4280.	3.9	32
161	Controlled synthesis of amphiphilic block copolymers based on polyester and poly(amino) Tj ETQq1 1 0.784314 68, 990-1003.	rgBT /Ove 4.1	rlock 10 Tf 5 31
162	Structure of Adsorption Layers of Amphiphilic Copolymers on Inorganic or Organic Particle Surfaces. Macromolecular Chemistry and Physics, 2010, 211, 971-976.	2.2	31

#	Article	IF	CITATIONS
163	Metal–Organic Frameworks Encapsulated in Photocleavable Capsules for UV-Light Triggered Catalysis. Chemistry of Materials, 2015, 27, 5495-5502.	6.7	31
164	Quantitative First-Principles Kinetic Modeling of the Aza-Michael Addition to Acrylates in Polar Aprotic Solvents. Journal of Organic Chemistry, 2016, 81, 12291-12302.	3.2	31
165	Full and Partial Amidation of Poly(methyl acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. Macromolecules, 2019, 52, 5102-5109.	4.8	31
166	Direct comparison of solution and solid phase synthesis of sequence-defined macromolecules. Polymer Chemistry, 2019, 10, 3859-3867.	3.9	31
167	Encapsulation and release by starâ€shaped block copolymers as unimolecular nanocontainers. Journal of Polymer Science Part A, 2008, 46, 650-660.	2.3	30
168	Modeling the morphology and mechanical behavior of shape memory polyurethanes based on solid-state NMR and synchrotron SAXS/WAXD. Journal of Materials Chemistry, 2010, 20, 3475.	6.7	30
169	Combining cationic ringâ€opening polymerization and click chemistry for the design of functionalized polyurethanes. Journal of Polymer Science Part A, 2011, 49, 1597-1604.	2.3	30
170	Low Modulus Dry Silicone-Gel Materials by Photoinduced Thiol–Ene Chemistry. Macromolecules, 2014, 47, 1292-1300.	4.8	30
171	Precision Multisegmented Macromolecular Lineups: A Display of Unique Control over Backbone Structure and Functionality. ACS Macro Letters, 2015, 4, 616-619.	4.8	30
172	Introduction to chemistry for covalent adaptable networks. Polymer Chemistry, 2020, 11, 5295-5296.	3.9	30
173	Poly(ethylene oxide)- <i>b</i> -poly(<scp>l</scp> -lactide) Diblock Copolymer/Carbon Nanotube-Based Nanocomposites: LiCl as Supramolecular Structure-Directing Agent. Biomacromolecules, 2011, 12, 4086-4094.	5.4	29
174	Providing polyurethane foams with functionality: a kinetic comparison of different "click―and coupling reaction pathways. Polymer Chemistry, 2013, 4, 1546-1556.	3.9	29
175	Combining Two Methods of Sequence Definition in a Convergent Approach: Scalable Synthesis of Highly Defined and Multifunctionalized Macromolecules. Chemistry - A European Journal, 2017, 23, 13906-13909.	3.3	29
176	Molecular access to multi-dimensionally encoded information. European Polymer Journal, 2019, 120, 109260.	5.4	29
177	Polyaddition Synthesis Using Alkyne Esters for the Design of Vinylogous Urethane Vitrimers. Macromolecules, 2021, 54, 7931-7942.	4.8	29
178	End-group modified poly(methyl vinyl ether): Characterization and LCST demixing behavior in water. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 461-469.	2.1	28
179	Evaluation of the Temperature Responsive Stationary Phase Poly(N-isopropylacrylamide) in Aqueous LC for the Analysis of Small Molecules. Chromatographia, 2007, 66, 143-150.	1.3	28
180	Advanced Polymer Architectures with Stimuli-Responsive Properties Starting from Inimers. Macromolecules, 2008, 41, 2593-2606.	4.8	28

#	Article	IF	CITATIONS
181	Microencapsulation of Active Ingredients Using PDMS as Shell Material. Macromolecules, 2014, 47, 8231-8237.	4.8	28
182	Automated Synthesis Protocol of Sequenceâ€Defined Oligoâ€Urethaneâ€Amides Using Thiolactone Chemistry. Macromolecular Rapid Communications, 2019, 40, e1800685.	3.9	28
183	ATRP poly(acrylate) star formation: A comparative study between MALDI and ESI mass spectrometry. Polymer, 2009, 50, 1986-2000.	3.8	27
184	Double-Modified Glycopolymers from Thiolactones to Modulate Lectin Selectivity and Affinity. ACS Macro Letters, 2018, 7, 1498-1502.	4.8	27
185	"Ciant―Hollow Multilayer Capsules by Microfluidic Templating. ACS Applied Materials & Interfaces, 2009, 1, 1196-1202.	8.0	26
186	The microstructure of capsule containing self-healing materials: A micro-computed tomography study. Materials Characterization, 2016, 119, 99-109.	4.4	26
187	Tunable Blocking Agents for Temperature-Controlled Triazolinedione-Based Cross-Linking Reactions. Macromolecules, 2018, 51, 3156-3164.	4.8	26
188	"Compatibilizing effect―in interpenetrating polymer networks. Macromolecular Chemistry and Physics, 1995, 196, 903-914.	2.2	25
189	Thermosensitive polymer structures based on segmented copolymer networks. Macromolecular Symposia, 2001, 164, 293-300.	0.7	25
190	Functionalized Thermoâ€Responsive Poly(vinyl ether) by Living Cationic Random Copolymerization of Methyl Vinyl Ether and 2â€Chloroethyl Vinyl Ether. Macromolecular Chemistry and Physics, 2007, 208, 1871-1882.	2.2	25
191	Poly(acrylic acid) with disulfide bond for the elaboration of pH-responsive brush surfaces. European Polymer Journal, 2010, 46, 195-201.	5.4	25
192	Cu(0)-mediated polymerization of hydrophobic acrylates using high-throughput experimentation. Polymer Chemistry, 2014, 5, 4268-4276.	3.9	25
193	Renewable thermoplastic polyurethanes containing rigid spiroacetal moieties. European Polymer Journal, 2015, 70, 232-239.	5.4	25
194	Covalent Fluorination Strategies for the Surface Modification of Polydienes. Macromolecular Rapid Communications, 2017, 38, 1700122.	3.9	25
195	Tyrosine-Triazolinedione Bioconjugation as Site-Selective Protein Modification Starting from RAFT-Derived Polymers. ACS Macro Letters, 2017, 6, 1368-1372.	4.8	25
196	Reversible TAD Chemistry as a Convenient Tool for the Design of (Re)processable PCLâ€Based Shapeâ€Memory Materials. Macromolecular Rapid Communications, 2017, 38, 1600517.	3.9	25
197	Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction. ACS Macro Letters, 2021, 10, 616-622.	4.8	25
198	Comparative Study of the Solid–Liquid Interface Behavior of Amphiphilic Block and Block‣ike Copolymers. Macromolecular Chemistry and Physics, 2009, 210, 287-298.	2.2	24

#	Article	IF	CITATIONS
199	Synthesis of thiolactone building blocks as potential precursors for sustainable functional materials. Tetrahedron, 2016, 72, 6616-6625.	1.9	24
200	Tailored Modification of Thioacrylates in a Versatile, Sequenceâ€Defined Procedure. Macromolecular Rapid Communications, 2017, 38, 1700500.	3.9	24
201	Solid state NMR study of segmented polymer networks: fine-tuning of phase morphology via their molecular design. Polymer, 2004, 45, 7943-7951.	3.8	23
202	Effect of crosslinker multiplicity on the gel point in ATRP. Journal of Polymer Science Part A, 2010, 48, 2016-2023.	2.3	23
203	Polythiolactone-Based Redox-Responsive Layers for the Reversible Release of Functional Molecules. ACS Applied Materials & Interfaces, 2014, 6, 22457-22466.	8.0	23
204	ADMET and TAD chemistry: a sustainable alliance. Polymer Chemistry, 2016, 7, 5655-5663.	3.9	23
205	Shining Light on Poly(ethylene glycol): From Polymer Modification to 3D Laser Printing of Water Erasable Microstructures. Advanced Materials, 2020, 32, e2003060.	21.0	23
206	MALDI-TOF Analysis of Dendrimer-like Poly(ethylene oxide)s. Macromolecules, 2005, 38, 10609-10613.	4.8	22
207	Preparation of star block co-polymers by combination of cationic ring opening polymerization and atom transfer radical polymerization. Designed Monomers and Polymers, 2005, 8, 705-714.	1.6	22
208	From NMP to RAFT and Thiolâ€Ene Chemistry by In Situ Functionalization of Nitroxide Chain Ends. Macromolecular Rapid Communications, 2012, 33, 1310-1315.	3.9	22
209	Thiolactone-based polymers for formaldehyde scavenging coatings. European Polymer Journal, 2016, 82, 166-174.	5.4	22
210	Thiol-Michael addition in polar aprotic solvents: nucleophilic initiation or base catalysis?. Polymer Chemistry, 2017, 8, 1341-1352.	3.9	22
211	Enhancing the Possibilities of Comprehensive Two-Dimensional Liquid Chromatography through Hyphenation of Purely Aqueous Temperature-Responsive and Reversed-Phase Liquid Chromatography. Analytical Chemistry, 2018, 90, 4961-4967.	6.5	22
212	In Situ Cross-Linked Nanofibers by Aqueous Electrospinning of Selenol-Functionalized Poly(2-oxazoline)s. Macromolecules, 2018, 51, 6149-6156.	4.8	22
213	Masked Primary Amines for a Controlled Plastic Flow of Vitrimers. ACS Macro Letters, 2022, 11, 919-924.	4.8	22
214	Continuous ATRP Synthesis of Block‣ike Copolymers via Column Reactors: Design and Validation of a Kinetic Model. Macromolecular Reaction Engineering, 2009, 3, 529-538.	1.5	21
215	Selfâ€assembling Linear and Star Shaped Poly(ϵâ€caprolactone)/poly[(meth)acrylic acid] Block Copolymers as Carriers of Indomethacin and Quercetin. Macromolecular Bioscience, 2013, 13, 1520-1530.	4.1	21
216	Combining vinylogous urethane and β-amino ester chemistry for dynamic material design. Polymer Chemistry, 2022, 13, 2008-2018.	3.9	21

#	Article	IF	CITATIONS
217	Linear poly(alkyl ethylene imine) with varying side chain length: synthesis and physical properties. Polymer Chemistry, 2010, 1, 747.	3.9	20
218	Thermoresponsive hyperbranched glycopolymers: Synthesis, characterization and lectin interaction studies. European Polymer Journal, 2015, 69, 490-498.	5.4	20
219	Simple design of chemically crosslinked plant oil nanoparticles by triazolinedione- ene chemistry. European Polymer Journal, 2016, 81, 77-85.	5.4	20
220	Thiolactone chemistry and copper-mediated CRP for the development of well-defined amphiphilic dispersing agents. Polymer Chemistry, 2016, 7, 1632-1641.	3.9	20
221	Precisely Alternating Functionalized Polyampholytes Prepared in a Single Pot from Sustainable Thiolactone Building Blocks. ACS Macro Letters, 2017, 6, 277-280.	4.8	20
222	Dynamic diselenide-containing polyesters from alcoholysis/oxidation of Î ³ -butyroselenolactone. Polymer Chemistry, 2018, 9, 4044-4051.	3.9	20
223	On-Demand Dissoluble Diselenide-Containing Hydrogel. Biomacromolecules, 2020, 21, 3308-3317.	5.4	20
224	Light-fueled dynamic covalent crosslinking of single polymer chains in non-equilibrium states. Chemical Science, 2021, 12, 1302-1310.	7.4	20
225	â€ ⁻ Click' Functionalization of Cryogels Conveniently Verified and Quantified Using Highâ€Resolution MAS NMR Spectroscopy. Macromolecular Rapid Communications, 2009, 30, 1328-1333.	3.9	19
226	Comparison of metal free polymer–dye conjugation strategies in protic solvents. Polymer Chemistry, 2016, 7, 3046-3055.	3.9	19
227	Double Modification of Polymer End Groups through Thiolactone Chemistry. Macromolecular Rapid Communications, 2016, 37, 947-951.	3.9	19
228	Easy access to triazolinedione-endcapped peptides for chemical ligation. Chemical Communications, 2017, 53, 593-596.	4.1	19
229	Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol–yne Cross‣inking. Angewandte Chemie, 2020, 132, 3637-3646.	2.0	19
230	Exploration of the Selectivity and Retention Behavior of Alternative Polyacrylamides in Temperature Responsive Liquid Chromatography. Analytical Chemistry, 2020, 92, 9815-9822.	6.5	19
231	Assembling Lipoic Acid and Nanoclay into Nacre-Mimetic Nanocomposites. Macromolecules, 2021, 54, 4658-4668.	4.8	19
232	Characteristics of new composite- and classical potentiometric sensors for the determination of pharmaceutical drugs. Electrochimica Acta, 2006, 51, 5062-5069.	5.2	18
233	Highly functionalized, aliphatic polyamides via CuAAC and thiol-yne chemistries. European Polymer Journal, 2012, 48, 2085-2096.	5.4	18
234	From one-pot stabilisation to in situ functionalisation in nitroxide mediated polymerisation: an efficient extension towards atom transfer radical polymerisation. Polymer Chemistry, 2012, 3, 1867.	3.9	18

#	Article	IF	CITATIONS
235	Computational Study and Kinetic Analysis of the Aminolysis of Thiolactones. Journal of Organic Chemistry, 2015, 80, 8520-8529.	3.2	18
236	Immobilization of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Interfaces, 2017, 9, 8317-8326.	8.0	18
237	Triazolinedione-"clicked―poly(phosphoester)s: systematic adjustment of thermal properties. Polymer Chemistry, 2017, 8, 4074-4078.	3.9	18
238	Rewritable Macromolecular Data Storage with Automated Readâ€out. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
239	Internal catalysis on the opposite side of the fence in non-isocyanate polyurethane covalent adaptable networks. European Polymer Journal, 2022, 168, 111100.	5.4	18
240	Discrete, self-immolative <i>N</i> -substituted oligourethanes and their use as molecular tags. Polymer Chemistry, 2022, 13, 4178-4185.	3.9	18
241	Multi-Block Polyurethanes via RAFT End-Group Switching and Their Characterization by Advanced Hyphenated Techniques. Macromolecules, 2012, 45, 6353-6362.	4.8	17
242	Functionalization of polyurethanes by incorporation of alkyne side-groups to oligodiols and subsequent thiol–yne post-modification. European Polymer Journal, 2013, 49, 3573-3581.	5.4	17
243	Oneâ€Pot Automated Synthesis of Quasi Triblock Copolymers for Selfâ€Healing Physically Crosslinked Hydrogels. Macromolecular Rapid Communications, 2016, 37, 1682-1688.	3.9	17
244	Squaric ester amides as hydrolysis-resistant functional groups for protein-conjugation of RAFT-derived polymers. Polymer Chemistry, 2016, 7, 7242-7248.	3.9	17
245	Lignin inspired phenolic polyethers synthesized via ADMET: Systematic structure-property investigation. European Polymer Journal, 2017, 95, 503-513.	5.4	17
246	Sequencing of Uniform Multifunctional Oligoesters via Random Chain Cleavages. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
247	Segmented polymer networks containing amino-dendrimers. Polymer International, 2003, 52, 191-197.	3.1	16
248	Pressure-enhanced dynamic heterogeneity in block copolymers of poly(methyl vinyl ether) and poly(isobutyl vinyl ether). Physical Review E, 2005, 72, 011802.	2.1	16
249	Force–reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks. Nature Communications, 2022, 13, .	12.8	16
250	New polymer architectures by cationic ring-opening polymerization. Macromolecular Symposia, 2000, 153, 209-216.	0.7	15
251	In-depth numerical analysis of the TDCB specimen for characterization of self-healing polymers. International Journal of Solids and Structures, 2015, 64-65, 145-154.	2.7	15
252	Multifunctional Dendrimer Formation Using Thiolactone Chemistry. Macromolecular Chemistry and Physics, 2017, 218, 1600575.	2.2	15

#	Article	IF	CITATIONS
253	Responsive Thiolactone-Derived <i>N</i> -Substituted Poly(Urethane-Amide)s. Macromolecular Rapid Communications, 2017, 38, 1600783.	3.9	15
254	Polyamides based on a partially bio-based spirodiamine. European Polymer Journal, 2017, 96, 221-231.	5.4	15
255	Structurally diverse polymers from norbornene and thiolactone containing building blocks. European Polymer Journal, 2018, 98, 246-253.	5.4	15
256	One-Pot Double Modification of Polymers Based on Thiolactone Chemistry. Advances in Polymer Science, 2014, , 105-131.	0.8	14
257	Tunable temperature responsive liquid chromatography through thiolactone-based immobilization of poly(N-isopropylacrylamide). Journal of Chromatography A, 2015, 1426, 126-132.	3.7	14
258	Polycaprolactone-b-poly(N-isopropylacrylamide) nanoparticles: Synthesis and temperature induced coacervation behavior. European Polymer Journal, 2018, 98, 468-474.	5.4	14
259	Anthracene-based polyurethane networks: Tunable thermal degradation, photochemical cure and stress-relaxation. European Polymer Journal, 2018, 105, 412-420.	5.4	14
260	Simultaneous interpenetrating networks of a polyurethane and poly(methyl methacrylate). II. Partitioning of MMA monomer in the last stages of polymerization. Journal of Applied Polymer Science, 1995, 58, 347-356.	2.6	13
261	Morphological transition during the thermal deprotection of poly(isobornyl) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 4 2.7	I22 Td (acryl
262	Preparation of pHâ€sensitive starâ€shaped aliphatic polyesters as precursors of polymersomes. Journal of Polymer Science Part A, 2011, 49, 1552-1563.	2.3	13
263	Synthesis of Clicked Imidazoliumâ€Containing Biosourced Copolymers and Application in Carbon Nanotube Dispersion. Macromolecular Rapid Communications, 2011, 32, 1960-1964.	3.9	13
264	Complexity from Simplicity: Unique Polymer Capsules, Rods, Monoliths, and Liquid Marbles Prepared via HIPE in Microfluidics. Particle and Particle Systems Characterization, 2013, 30, 438-444.	2.3	13
265	Biodegradable polymer networks via triazolinedione-crosslinking of oleyl-functionalized poly(Iµ-caprolactone). European Polymer Journal, 2017, 89, 230-240.	5.4	13
266	Ultrafast Tailoring of Carbon Surfaces via Electrochemically Attached Triazolinediones. Langmuir, 2018, 34, 2397-2402.	3.5	13
267	Surface Modification of (Non)â€Fluorinated Vitrimers through Dynamic Transamination. Macromolecular Rapid Communications, 2021, 42, e2000644.	3.9	13
268	Recyclable vitrimer epoxy coatings for durable protection. European Polymer Journal, 2022, 176, 111426.	5.4	13
269	Association Behavior between End-Functionalized Block Copolymers PEO-PPO-PEO and Poly(acrylic) Tj ETQq1 1 0.	.784314 rg 2.2	gBT /Overloc
270	The sol-gel approach towards thermo-responsive poly(N-isopropyl acrylamide) hydrogels with improved mechanical properties. Macromolecular Symposia, 2004, 210, 483-491.	0.7	12

#	Article	IF	CITATIONS
271	Convergent synthesis of dendrimers based on 1,3,3-trisubstituted 2-oxindoles. European Polymer Journal, 2009, 45, 3196-3209.	5.4	12
272	Straightforward RAFT Procedure for the Synthesis of Heterotelechelic Poly(acrylamide)s. Macromolecular Rapid Communications, 2014, 35, 405-411.	3.9	12
273	MacroRAFT agents from renewable resources and their use as polymeric scaffolds in a grafting from approach. Polymer Chemistry, 2014, 5, 3163-3169.	3.9	12
274	Click reactive microgels as a strategy towards chemically injectable hydrogels. Polymer Chemistry, 2016, 7, 6752-6760.	3.9	12
275	Multi-olefin containing polyethers and triazolinediones: a powerful alliance. Polymer Chemistry, 2019, 10, 4699-4708.	3.9	12
276	Sequence-Defined Mikto-Arm Star-Shaped Macromolecules. Journal of the American Chemical Society, 2022, 144, 7236-7244.	13.7	12
277	Tailored polymers by cationic ring-opening polymerization. Angewandte Makromolekulare Chemie, 1994, 223, 1-11.	0.2	11
278	Thiolactone chemistry for the synthesis of functional siliconeâ€based amphiphilic coâ€networks. Journal of Polymer Science Part A, 2019, 57, 322-333.	2.3	11
279	Sophisticated macromolecular structures by cationic ringâ€opening polymerizations. Macromolecular Symposia, 1995, 98, 185-192.	0.7	10
280	Highly structured pH-responsive honeycomb films by a combination of a breath figure process and in situ thermolysis of a polystyrene-block-poly(ethoxy ethyl acrylate) precursor. Polymer Chemistry, 2013, , .	3.9	10
281	Deconvolution of overlapping spectral polymer signals in size exclusion separation-diode array detection separations by implementing a multivariate curve resolution method optimized by alternating least square. Journal of Chromatography A, 2014, 1342, 63-69.	3.7	10
282	UV-cured multifunctional coating resins prepared from renewable thiolactone derivatives. Progress in Organic Coatings, 2017, 107, 75-82.	3.9	10
283	PEGylated Precision Segments Based on Sequenceâ€Defined Thiolactone Oligomers. Macromolecular Rapid Communications, 2017, 38, 1700688.	3.9	10
284	Bifunctionalized Redox-Responsive Layers Prepared from a Thiolactone Copolymer. Langmuir, 2018, 34, 5234-5244.	3.5	10
285	A Thiolactone Strategy for Straightforward Synthesis of Disulfideâ€Linked Sideâ€Chainâ€toâ€Tail Cyclic Peptides Featuring an Nâ€Terminal Modification Handle. ChemBioChem, 2018, 19, 641-646.	2.6	10
286	One-Pot Modular Synthesis of Functionalized RAFT Agents Derived from a Single Thiolactone Precursor. ACS Macro Letters, 2016, 5, 942-945.	4.8	9
287	Sustainable synthesis routes towards urazole compounds. Green Chemistry, 2017, 19, 5659-5664.	9.0	9
288	A novel donor-ï€-acceptor anthracene monomer: Towards faster and milder reversible dimerization. Tetrahedron, 2019, 75, 912-920.	1.9	9

#	Article	IF	CITATIONS
289	TAD Click Chemistry on Aliphatic Polycarbonates: A First Step Toward Tailorâ€Made Materials. Macromolecular Rapid Communications, 2019, 40, 1800743.	3.9	9
290	Poly(ethylene oxide)/Poly(methyl methacrylate) (Semi-)interpenetrating Polymer Networks: Synthesis and Phase Diagrams. Polymers for Advanced Technologies, 1996, 7, 257-264.	3.2	8
291	Fructose as a reducing agent for in situ generation of Cu(l) species via an electron-transfer reaction in copper-catalyzed living/controlled radical polymerization of styrene. Designed Monomers and Polymers, 2007, 10, 425-438.	1.6	8
292	Sequence-defined oligoampholytes using hydrolytically stable vinyl sulfonamides: design and UCST behaviour. Polymer Chemistry, 2021, 12, 4193-4204.	3.9	8
293	Solid-State NMR Study of the Multiphase Behavior of Linear and Cross-Linked Poly(1,3-dioxolane). Macromolecules, 1996, 29, 4000-4005.	4.8	7
294	Poly(ethylene oxide) containing segmented networks as precursors for ion-conducting solid-state materials. Polymer International, 2002, 51, 1231-1237.	3.1	7
295	New approach for the synthesis of amino-containing linear polymers. Polymer International, 2003, 52, 1589-1594.	3.1	7
296	The nature of Cu(II) species in ATRP: New insights via EPR. Journal of Polymer Science Part A, 2010, 48, 1493-1501.	2.3	7
297	Imidazolium Endâ€Functionalized ATRP Polymers as Directing Agents for CNT Dispersion and Confinement. Macromolecular Chemistry and Physics, 2012, 213, 1259-1265.	2.2	7
298	High molar mass segmented macromolecular architectures by nitroxide mediated polymerisation. Polymer Chemistry, 2013, 4, 4697.	3.9	7
299	Preparation of Janus nanoparticles from block copolymer thin films using triazolinedione chemistry. RSC Advances, 2017, 7, 37048-37054.	3.6	7
300	Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angewandte Chemie, 0, , .	2.0	7
301	High molecular weight poly(cycloacetals) towards processable polymer materials. Polymer, 2016, 103, 98-103.	3.8	6
302	Acrylate-based coatings to protect lead substrates. Electrochimica Acta, 2017, 229, 8-21.	5.2	6
303	Eintauchen in den Sequenzraum der Thiolactonâ€PrÃ⊠sionspolymere: eine kombinatorische Strategie zur Identifizierung funktionaler Domäen. Angewandte Chemie, 2019, 131, 1980-1984.	2.0	6
304	Thermal dissociation of anthracene photodimers in the condensed state: kinetic evaluation and complex phase behaviour. Physical Chemistry Chemical Physics, 2020, 22, 17306-17313.	2.8	6
305	Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polymer Chemistry, 2021, 12, 4924-4933.	3.9	6
306	Photoâ€Crosslinking and Reductive Decrosslinking of Polymethacrylateâ€Based Copolymers Containing 1,2â€Dithiolane Rings. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	6

#	Article	IF	CITATIONS
307	Reversible Transformations of Polymer Topologies through Visible Light and Darkness. Journal of the American Chemical Society, 2022, 144, 6954-6963.	13.7	6
308	Composition and self-irradiation effects on the positron annihilation lifetime properties of poly(ethylene-co-vinyl acetate). Radiation Physics and Chemistry, 2000, 58, 497-501.	2.8	5
309	Crosslinked Polyurethane-Based Gels. Polymer Journal, 2003, 35, 353-358.	2.7	4
310	High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules. ACS Combinatorial Science, 2017, 19, 447-454.	3.8	4
311	Anthraceneâ€Based Colloidal Polymer Nanoparticles: Their Photochemical Ligation and Waterborne Coating Applications. Particle and Particle Systems Characterization, 2018, 35, 1800030.	2.3	4
312	Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation. Journal of Materials Science, 2020, 55, 1933-1945.	3.7	4
313	Substituent effect on the thermophysical properties and thermal dissociation behaviour of 9-substituted anthracene derivatives. Physical Chemistry Chemical Physics, 2021, 23, 2252-2263.	2.8	4
314	Surface Modification in Aqueous Dispersions with Thermo-Responsive Poly(methylvinylether) Copolymers in Combination with Ultrasonic Treatment. Chemistry and Chemical Technology, 2011, 5, 59-65.	1.1	4
315	New self-crosslinkable copolymers based onN-methyl-N-vinylbenzylpyrrolidinium halide and methyl methacrylate. Polymer International, 2000, 49, 288-292.	3.1	3
316	Collapsing and reswelling kinetics of thermoresponsive polymers on surfaces: a matter of confinement and constraints. Soft Matter, 2014, 10, 7256-7261.	2.7	3
317	Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 1222-1232.	0.4	3
318	Polycycloacetals <i>via</i> polytransacetalization of diglycerol bisacetonide. Polymer Chemistry, 2018, 9, 4789-4797.	3.9	3
319	Urethane polythioether self-crosslinking resins. Progress in Organic Coatings, 2019, 136, 105215.	3.9	3
320	Rewritable Macromolecular Data Storage with Automated Readâ€out. Angewandte Chemie, 2022, 134, .	2.0	3
321	Sequencing of Uniform Multifunctional Oligoesters via Random Chain Cleavages. Angewandte Chemie, 2022, 134, .	2.0	3
322	Introduction to molecularly defined polymers: synthesis and function. Polymer Chemistry, 2022, 13, 2400-2401.	3.9	3
323	Functional segmented polymer networks based on polytetrahydrofuran and poly(vinylbenzyl) Tj ETQq1 1 0.7843	814 rgBT / 3.0	Overlock 10
324	Novel Amphiphilic Miktoâ€Arm Starâ€Shaped Copolymers for the Preparation of PLAâ€Based Nanocarriers. Macromolecular Symposia, 2011, 309-310, 111-122.	0.7	2

#	Article	IF	CITATIONS
325	Conformational influence of fluorinated building blocks on the physical properties of polyesters. Polymer, 2019, 164, 134-141.	3.8	2
326	Analysis of sequence-defined oligomers through Advanced Polymer Chromatography™ – mass spectrometry hyphenation. RSC Advances, 2020, 10, 35245-35252.	3.6	2
327	Thiolactones as Functional Handles for Polymer Synthesis and Modification. RSC Polymer Chemistry Series, 2013, , 195-216.	0.2	2
328	Experimental results on the correlation between cross-linking, polarization and space charge in PMMA. Polymer International, 1999, 48, 5-7.	3.1	1
329	Synthesis of PTHF-Grafted PMMA Based on the Reaction of Methyl Esters with Quaternary Ammonium Salts. Macromolecules, 2001, 34, 761-767.	4.8	1
330	Click Chemistry and Step-Growth Polymerization: The Ideal Combination for the Rejuvenation of Industrial Polymers. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 145-164.	0.5	1
331	Thermalisation of Positronium in Polymers. Materials Science Forum, 1997, 255-257, 62-66.	0.3	0
332	Editorial: Precision polymer materials. European Polymer Journal, 2015, 62, 244-246.	5.4	0
333	From Novel Block-Like Copolymers to Reactive Nanoparticles: ATRP and "Click―Chemistry as Synthetic Tools. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 111-132.	0.5	0
334	Introduction to the themed collection on synthetic methodologies for complex macromolecular structures in honour of Prof. Yusuf Yagci's 70 th birthday. Polymer Chemistry, 2022, 13, 1456-1457.	3.9	0