Jijian Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1305790/jijian-xu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 321
 16,167
 62
 119

 papers
 citations
 h-index
 g-index

 337
 19,138
 9.6
 7

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
321	Assembling Iron Oxide Nanoparticles into Aggregates by LiPO: A Universal Strategy Inspired by Frogspawn for Robust Li-Storage ACS Nano, 2022,	16.7	3
320	Quasi-Zero-StrainDio 2 as an Ultra-Long-Life Anode for Li-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2022 , 5, 1305-1312	6.1	0
319	Amorphous Lithium-Phosphate-Encapsulated Fe2O3 as a High-Rate and Long-Life Anode for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3463-3470	6.1	2
318	PerspectiveElectrolyte Design for Aqueous Batteries: From Ultra-High Concentration to Low Concentration?. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 030530	3.9	5
317	A EConjugated Polyimide-Based High-Performance Aqueous Potassium-Ion Asymmetric Supercapacitor <i>Macromolecular Rapid Communications</i> , 2022 , e2200040	4.8	3
316	Nano gold coupled black titania composites with enhanced surface plasma properties for efficient photocatalytic alkyne reduction. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121222	21.8	2
315	One-Step Construction of Ordered Sulfur-Terminated Tantalum Carbide MXene for Efficient Overall Water Splitting. <i>Small Structures</i> , 2022 , 3, 2100206	8.7	6
314	Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. <i>ACS Energy Letters</i> , 2022 , 7, 131-139	20.1	14
313	Record-High Superconductivity in Transition Metal Dichalcogenides Emerged in Compressed 2H-TaS <i>Advanced Materials</i> , 2021 , e2103168	24	5
312	Interfacial Design for 4.6 V High-Voltage Single-Crystalline LiCoO Cathode. <i>Advanced Materials</i> , 2021 , e2108353	24	19
311	Utilization of Interfacial Charge Storage toward Ultra-high Capacity: LiSO Sealed Micron Sized Iron Oxides as Anode for Lithium Batteries. <i>ACS Applied Materials & District States</i> , 2021,	9.5	3
310	Two-Dimensional Silver Cyanamide Nanocrystals toward CO2 Reduction. <i>ACS Applied Nano Materials</i> , 2021 , 4, 12506-12513	5.6	
309	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 27140-27169	13	1
308	Micrometer-Sized, Dual-Conductive MoO /EMoO Mosaics for High Volumetric Capacity Li/Na-Ion Batteries <i>Small Methods</i> , 2021 , 5, e2100765	12.8	4
307	Realizing the Excellent HER Performance of PtPbS by d-Orbital Electronic Modulation. <i>Inorganic Chemistry</i> , 2021 , 60, 16538-16543	5.1	O
306	Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. <i>Science</i> , 2021 , 374, 172-178	33.3	43
305	Modulation of the Electronic Structure of IrSe2 by Filling the Bi Atom as a Bifunctional Electrocatalyst for pH Universal Water Splitting. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000074	1.6	1

(2021-2021)

304	Layered Structure Na2Ti3O7 as a Promising Anode Material for Sodium-Ion Batteries. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000095	1.6	1	
303	Intrinsic Electron Localization of Metastable MoS Boosts Electrocatalytic Nitrogen Reduction to Ammonia. <i>Advanced Materials</i> , 2021 , 33, e2007509	24	22	
302	An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3661-3671	16.4	103	
301	Suppression of the superconducting transition temperature in Se-doping 2´M WS2. <i>Journal of Physics and Chemistry of Solids</i> , 2021 , 149, 109789	3.9	2	
300	Flexible yet Robust Framework of Tin(II) Oxide Carbodiimide for Reversible Lithium Storage. <i>Chemistry - A European Journal</i> , 2021 , 27, 2717-2723	4.8	3	
299	Efficient and Full-Spectrum Photothermal Dehydrogenation of Ammonia Borane for Low-Temperature Release of Hydrogen. <i>Advanced Functional Materials</i> , 2021 , 31, 2007591	15.6	8	
298	An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. <i>Angewandte Chemie</i> , 2021 , 133, 3705-3715	3.6	17	
297	Nitrogen-doped hierarchical few-layered porous carbon for efficient electrochemical energy storage 2021 , 3, 349-359		5	
296	Proton-insertion-pseudocapacitance of tungsten bronze tunnel structure enhanced by transition metal ion anchoring. <i>Nanoscale</i> , 2021 , 13, 16790-16798	7.7	1	
295	Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2021 , 36, 766	1	1	
294	Interstitial boron-doped mesoporous semiconductor oxides for ultratransparent energy storage. <i>Nature Communications</i> , 2021 , 12, 445	17.4	16	
293	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. <i>Science Advances</i> , 2021 , 7,	14.3	30	
292	Tuning Coordination Environments of Dopants through Topochemical Reaction Enables Substantial Enhancement of Luminescence in Mn4+-Doped Perovskite. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 4646-4654	3.8	7	
291	Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for LithiumBulfur Battery. <i>ACS Energy Letters</i> , 2021 , 6, 862-868	20.1	29	
2 90	In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. <i>CheM</i> , 2021 ,	16.2	16	
289	Suppressing Dissolution of Pt-Based Electrocatalysts through the Electronic Metal Support Interaction. <i>Advanced Energy Materials</i> , 2021 , 11, 2101050	21.8	8	
288	Metal cyanamides: Open-framework structure and energy conversion/storage applications. <i>Journal of Energy Chemistry</i> , 2021 , 61, 347-367	12	0	
287	Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 295, 12	0 2 18	16	

286	Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. <i>Chemical Communications</i> , 2021 , 57, 5670-5673	5.8	O
285	A new compound PtBiS with superior performance for the hydrogen evolution reaction. <i>Chemical Communications</i> , 2021 , 57, 7946-7949	5.8	3
284	Hard Carbon Microsphere with Expanded Graphitic Interlayers Derived from a Highly Branched Polymer Network as Ultrahigh Performance Anode for Practical Sodium-Ion Batteries ACS Applied Materials & Description (2014), 13, 61180-61188	9.5	2
283	Solvation Structure Design for Aqueous Zn Metal Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21404-21409	16.4	215
282	Sr4Pb1.5Sb5O5Se8: a new mid-infrared nonlinear optical material with a moderate SHG response. <i>CrystEngComm</i> , 2020 , 22, 3526-3530	3.3	10
281	Facile and economical synthesis of nitrogen-rich tantalum nitrides via an ammonia looping process under confined space. <i>New Journal of Chemistry</i> , 2020 , 44, 9158-9162	3.6	2
280	Boron-Induced Nitrogen Fixation in 3D Carbon Materials for Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 28075-28082	9.5	14
279	Intermediate band induced by p-block metalloid antimony in SnS2 for higher solar energy utilization. <i>Materials Today Communications</i> , 2020 , 24, 101333	2.5	1
278	Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis. <i>Cell Reports Physical Science</i> , 2020 , 1, 100081	6.1	4
277	Enhanced Charge Carrier Lifetime of TiS3 Photoanode by Introduction of S22[Vacancies for Efficient Photoelectrochemical Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2020 , 30, 2001286	15.6	8
276	Ultra-Light Graphene Tile-Based Phase-Change Material for Efficient Thermal and Solar Energy Harvest. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5517-5522	6.1	13
275	Amorphous phosphated titanium oxide with amino and hydroxyl bifunctional groups for highly efficient heavy metal removal. <i>Environmental Science: Nano</i> , 2020 , 7, 1266-1274	7.1	8
274	Intrinsically low thermal conductivity in a p-type semiconductor SrOCuBiSe with a [SrO]-intercalated CuBiSe structure. <i>Chemical Communications</i> , 2020 , 56, 4356-4359	5.8	3
273	SrGaOS: A Nonlinear Optical Oxysulfide with Melilite-Derived Structure and Wide Band Gap. <i>Inorganic Chemistry</i> , 2020 , 59, 9944-9950	5.1	13
272	NbSeC: a new compound as a combination of transition metal dichalcogenide and MXene for oxygen evolution reaction. <i>Chemical Communications</i> , 2020 , 56, 9036-9039	5.8	4
271	K(HO)MoS as a universal host for rechargeable aqueous cation (K, Na, Li, NH, Mg, Al) batteries. <i>Dalton Transactions</i> , 2020 , 49, 3488-3494	4.3	14
270	Pyrochlore phase Ce2Sn2O7via an atom-confining strategy for reversible lithium storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5744-5749	13	5
269	CoN loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn-air battery. <i>Nanoscale</i> , 2020 , 12, 6089-6095	7.7	19

(2020-2020)

268	SiO2 stabilizes electrochemically active nitrogen in few-layer carbon electrodes of extraordinary capacitance. <i>Journal of Energy Chemistry</i> , 2020 , 49, 179-188	12	5
267	Spherical Sacrificial ZnO TemplateDerived Hybrid Ni/Co3O4 Cubes as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. <i>Energy Technology</i> , 2020 , 8, 1901310	3.5	5
266	Nanoporous Carbon Foam for Water and Air Purification. ACS Applied Nano Materials, 2020, 3, 1564-157	′0 5.6	11
265	Renewable P-type zeolite for superior absorption of heavy metals: Isotherms, kinetics, and mechanism. <i>Science of the Total Environment</i> , 2020 , 726, 138535	10.2	19
264	Subnano Ruthenium Species Anchored on Tin Dioxide Surface for Efficient Alkaline Hydrogen Evolution Reaction. <i>Cell Reports Physical Science</i> , 2020 , 1, 100026	6.1	10
263	Highly Hydroxylated Porous Nanozirconia for Complete Trace Cr(VI) Removal. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3315-3322	5.6	6
262	Nitrogen-doped black titania for high performance supercapacitors. <i>Science China Materials</i> , 2020 , 63, 1227-1234	7.1	8
261	Atomic Pillar Effect in PdxNbS2 to Boost Basal Plane Activity for Stable Hydrogen Evolution. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 2408-2408	О	
260	Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors. <i>Microporous and Mesoporous Materials</i> , 2020 , 294, 109884	5.3	6
259	ZnO-Templated Selenized and Phosphorized Cobalt-Nickel Oxide Microcubes as Rapid Alkaline Water Oxidation Electrocatalysts. <i>Chemistry - A European Journal</i> , 2020 , 26, 1306-1313	4.8	
258	Solar activated crude oil cleanup using net-shape-formed ultralight graphene tiles. <i>Applied Materials Today</i> , 2020 , 19, 100551	6.6	2
257	Ruthenium-Doped Cobalt-Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer. <i>Small</i> , 2020 , 16, e1905328	11	37
256	Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction. <i>Dalton Transactions</i> , 2020 , 49, 1398-1402	4.3	5
255	Sulfur-terminated tin oxides for durable, highly reversible storage of large-capacity lithium. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 626-631	13	4
254	Dehalogenation on the surface of nano-templates: A rational route to tailor halogenated polymer-derived soft carbon. <i>Carbon</i> , 2020 , 159, 221-228	10.4	9
253	A reverse slipping strategy for bulk-reduced TiO2N preparation from MagnII phase Ti4O7. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 212-220	6.8	1
252	Orthorhombic NbO for Durable High-Rate Anode of Li-Ion Batteries. <i>IScience</i> , 2020 , 23, 100767	6.1	21
251	Cu-dispersed cobalt oxides as high volumetric capacity anode materials for Li-ion storage. <i>Energy Storage Materials</i> , 2020 , 27, 453-458	19.4	8

250	Conductive Black Titania Nanomaterials for Efficient Photocatalytic Degradation of Organic Pollutants. <i>Catalysis Letters</i> , 2020 , 150, 1346-1354	2.8	10
249	Photocatalytic Performance of MWCNTs/TiO2 Nanocomposites: Conventional vs. Microwave-Assisted Synthesis. <i>Integrated Ferroelectrics</i> , 2020 , 211, 175-183	0.8	O
248	Oxygen-enriched tubular carbon for efficient solar steam generation. <i>Carbon</i> , 2020 , 170, 256-263	10.4	11
247	Recent progress and perspectives of defective oxide anode materials for advanced lithium ion battery. <i>EnergyChem</i> , 2020 , 2, 100045	36.9	24
246	A rationally designed 3D interconnected porous tin dioxide cube with reserved space for volume expansion as an advanced anode of lithium-ion batteries. <i>Chemical Communications</i> , 2020 , 56, 10289-10	12 ⁵ 92	4
245	Nitrogen-Rich Hierarchical Porous Carbon Prepared by Sol-Gel Assisted Inorganic Template Methods for Supercapacitors. <i>Batteries and Supercaps</i> , 2020 , 3, 1165-1171	5.6	4
244	A novel two-dimensional oxysulfide Sr3.5Pb2.5Sb6O5S10: synthesis, crystal structure, and photoelectric properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11018-11021	7.1	1
243	Elucidation of the Jahn-Teller effect in a pair of sodium isomer. <i>Nano Energy</i> , 2020 , 77, 105167	17.1	12
242	Synthesis, crystal structure, and magnetic properties of layered SmCrS2⊠SexO solid solutions. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3980-3986	6.8	1
241	Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20072-20081	13	17
240	Surface decoration accelerates the hydrogen evolution kinetics of a perovskite oxide in alkaline solution. <i>Energy and Environmental Science</i> , 2020 , 13, 4249-4257	35.4	16
239	Constructing porous TiO crystals by an etching process for long-life lithium ion batteries. <i>Nanoscale</i> , 2020 , 12, 18429-18436	7.7	3
238	Understanding the surface reduction of nano rutile and anatase: Selective breaking of Ti-O bonds. <i>Materials Research Bulletin</i> , 2020 , 121, 110617	5.1	9
237	Boron and Nitrogen Co-Doped Trimodal-Porous Wood-Derived Carbon for Boosting Capacitive Performance. <i>Energy Technology</i> , 2020 , 8, 1900950	3.5	15
236	Controllable Conversion of CdNCN Nanoparticles into Various Chalcogenide Nanostructures for Photo-driven Applications. <i>Chemistry - A European Journal</i> , 2020 , 26, 7955-7960	4.8	2
235	Constructing Hierarchical Porous Carbon of High-Performance Capacitance through a Two-Step Nitrogen-Fixation Method. <i>Energy Technology</i> , 2020 , 8, 2000107	3.5	2
234	Effective incorporation of nitrogen and boron in worm-like carbon foam for confining polysulfides. <i>Carbon</i> , 2019 , 155, 379-385	10.4	8
233	K[BiMnS], Design of a Highly Selective Ion Exchange Material and Direct Gap 2D Semiconductor. Journal of the American Chemical Society, 2019 , 141, 16903-16914	16.4	16

232	Synthesis of Co2P nanoparticles decorated nitrogen, phosphorus Co-doped Carbon-CeO2 composites for highly efficient oxygen reduction. <i>Journal of Alloys and Compounds</i> , 2019 , 801, 192-198	5.7	9
231	A bridge between battery and supercapacitor for power/energy gap by using dual redox-active ions electrolyte. <i>Chemical Engineering Journal</i> , 2019 , 375, 122054	14.7	15
230	Synthesis, Crystal Structure, and Physical Properties of Layered CrSeO (= Ce-Nd). <i>Inorganic Chemistry</i> , 2019 , 58, 9482-9489	5.1	3
229	Novel Black BiVO4/TiO2N Photoanode with Enhanced Photon Absorption and Charge Separation for Efficient and Stable Solar Water Splitting. <i>Advanced Energy Materials</i> , 2019 , 9, 1901287	21.8	92
228	Toward large-scale water treatment using nanomaterials. <i>Nano Today</i> , 2019 , 27, 11-27	17.9	48
227	Dismutation of Titanium Sub-oxide into TiO and TiO with Structural Hierarchy Assisted by Ammonium Halides. <i>Chemistry - A European Journal</i> , 2019 , 25, 10642-10649	4.8	2
226	Sol-gel assisted chemical activation for nitrogen doped porous carbon. <i>Microporous and Mesoporous Materials</i> , 2019 , 286, 18-24	5.3	12
225	Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution. <i>Chemistry of Materials</i> , 2019 , 31, 4726-4731	9.6	21
224	In Situ Synthesis of MoC Nanodot@Carbon Hybrids for Capacitive Lithium-Ion Storage. <i>ACS Applied Materials & Acs Applied & Acs Appli</i>	9.5	9
223	Complexing-Coprecipitation Method to Synthesize Catalysts of Cobalt, Nitrogen-Doped Carbon, and CeO2 Nanosheets for Highly Efficient Oxygen Reduction. <i>ChemNanoMat</i> , 2019 , 5, 831-837	3.5	7
222	Porous NiCo2S4/Co9S8 Microcubes Templated by Sacrificial ZnO Spheres as an Efficient Bifunctional Oxygen Electrocatalyst. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800167	5.9	13
221	Crystal structure design and multiband physical properties of quaternary sulfide BaBiCoS for optoelectronic conversion. <i>Chemical Communications</i> , 2019 , 55, 4809-4812	5.8	2
220	Boosting the Stable Na Storage Performance in 1D Oxysulfide. Advanced Energy Materials, 2019, 9, 190	017.8	12
219	Sr6Cd2Sb6O7S10: Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups. <i>Angewandte Chemie</i> , 2019 , 131, 8162-8165	3.6	10
218	Sr Cd Sb O S: Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8078-8081	16.4	56
217	Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li Cu Ge S. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7673-7677	16.4	18
216	Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge3S12. Angewandte Chemie, 2019 , 131, 7755-7759	3.6	4
215	Suppression of graphene nucleation by plasma treatment of Cu foil for the rapid growth of large-size single-crystal graphene. <i>Carbon</i> , 2019 , 147, 51-57	10.4	18

214	Iron-incorporated chalcopyrite of an intermediate band for improving solar wide-spectrum absorption. <i>Journal of Solid State Chemistry</i> , 2019 , 277, 388-394	3.3	2
213	Rapid growth of large-area single-crystal graphene film by seamless stitching using resolidified copper foil on a molybdenum substrate. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18373-18379	13	7
212	Gate-Tunable Electrical Transport in Thin 2M-WS2 Flakes. <i>Advanced Electronic Materials</i> , 2019 , 5, 19004	16 8 .4	10
211	Synthesis, crystal structure, and optical properties of Ba2SbO2SX (X = Br, I) oxy-chalcohalides. Journal of Solid State Chemistry, 2019 , 278, 120811	3.3	1
210	Efficient conversion of CO2 to methane using thin-layer SiOx matrix anchored nickel catalysts. <i>New Journal of Chemistry</i> , 2019 , 43, 13217-13224	3.6	8
209	Observation of superconductivity in pressurized 2M WSe2 crystals. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8551-8555	7.1	12
208	Synthesis, crystal structures and physical properties of A(H2O) MoS2 (A´=´K, Rb, Cs). <i>Journal of Solid State Chemistry</i> , 2019 , 279, 120937	3.3	4
207	Crystal structure and electrical resistance property of Rb(HO) WS. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2019 , 75, 976-979	0.7	1
206	Synthesis, Crystal Structure, and Excellent Selective Pb2+ Ion Adsorption of New Layered Compound (NH4)In3(SO4)2(OH)6. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 5000-5007	2.3	3
205	Enhanced Photoelectric SrOCuSbS of a [SrO]-Intercalated CuSbS Structure. <i>Inorganic Chemistry</i> , 2019 , 58, 69-72	5.1	6
204	Cooperative Catalysis of Nickel and Nickel Oxide for Efficient Reduction of CO2 to CH4. <i>ChemCatChem</i> , 2019 , 11, 1295-1302	5.2	14
203	Structural Determination and Nonlinear Optical Properties of New 1T?-Type MoS Compound. Journal of the American Chemical Society, 2019 , 141, 790-793	16.4	51
202	Enhanced Photovoltaic Performance and Thermal Stability of CHNHPbI Perovskite through Lattice Symmetrization. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 740-746	9.5	13
201	Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. <i>Journal of Materiomics</i> , 2019 , 5, 133-146	6.7	46
200	Enhanced specific capacitance by a new dual redox-active electrolyte in activated carbon-based supercapacitors. <i>Carbon</i> , 2019 , 143, 300-308	10.4	69
199	A Facile Approach To Improve Electrochemical Capacitance of Carbons by in Situ Electrochemical Oxidation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 5999-6008	9.5	4
198	Charge-Transfer-Promoted High Oxygen Evolution Activity of Co@CoS Core-Shell Nanochains. <i>ACS Applied Materials & District Materials & </i>	9.5	32
197	Metastable MoS: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. <i>Chemistry - A European Journal</i> , 2018 , 24, 15942-15954	4.8	67

(2018-2018)

196	Self-templated synthesis of heavily nitrogen-doped hollow carbon spheres. <i>Chemical Communications</i> , 2018 , 54, 4565-4568	5.8	9
195	Well-Dispersed Ruthenium in Mesoporous Crystal TiO as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5719-5727	16.4	152
194	Constructing hierarchical porous carbon via tin punching for efficient electrochemical energy storage. <i>Carbon</i> , 2018 , 134, 391-397	10.4	14
193	Enhanced Charge Injection and Collection of Niobium-Doped TiO2/Gradient Tungsten-Doped BiVO4 Nanowires for Efficient Solar Water Splitting. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1218-1225	6.1	13
192	Oxygen Evolution Activity of Co-Ni Nanochain Alloys: Promotion by Electron Injection. <i>Chemistry - A European Journal</i> , 2018 , 24, 3707-3711	4.8	5
191	Silver cyanamide nanoparticles decorated ultrathin graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. <i>Catalysis Science and Technology</i> , 2018 , 8, 1447-1453	5.5	13
190	Metal/Graphene Composites with Strong Metal® Bondings for Sulfur Immobilization in Li® Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 3263-3272	3.8	23
189	Tunable Synthesis of Colorful Nitrogen-Doped Titanium Oxide and Its Application in Energy Storage. <i>ACS Applied Energy Materials</i> , 2018 , 1, 876-882	6.1	16
188	Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO2 Reduction. <i>ACS Catalysis</i> , 2018 , 8, 1009-1017	13.1	164
187	Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K. <i>Advanced Materials</i> , 2018 , 30, 1706240	24	32
186	Nonaqueous synthesis of metal cyanamide semiconductor nanocrystals for photocatalytic water oxidation. <i>Chemical Communications</i> , 2018 , 54, 1575-1578	5.8	13
185	Synthesis, Structure, and Optical Properties of Antiperovskite-Derived BaMQX (M = As, Sb; Q = S, Se; X = Cl, Br, I) Chalcohalides. <i>Inorganic Chemistry</i> , 2018 , 57, 1449-1454	5.1	13
184	Facile Synthesis of Nitrogen and Halogen Dual-Doped Porous Graphene as an Advanced Performance Anode for Lithium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701261	4.6	15
183	Observation of High Capacitance from Molecular Gd@C82 in Aqueous Electrolyte Derived from Energy-Level Matching with Proton. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800240	4.6	3
182	Surface confined titania redox couple for ultrafast energy storage. <i>Materials Horizons</i> , 2018 , 5, 691-698	14.4	14
181	Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. <i>Catalysis Science and Technology</i> , 2018 , 8, 2427-2433	5.5	16
180	Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption. <i>Inorganic Chemistry</i> , 2018 , 57, 3956-3962	5.1	26
179	A strategy to deposit nano metals in multi-layer graphene for scalable synthesis of high performance anode materials in lithium ion battery. <i>Journal of Alloys and Compounds</i> , 2018 , 731, 739-74	. 4 7-7	3

Unusual evolution of Bc2 and Tc with inclined fields in restacked TaS2 nanosheets. Npj Quantum

Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and

extraordinary solar desalination. Nano Energy, 2018, 53, 425-431

6

62

5

17.1

Materials, 2018, 3,

162

161

(2017-2018)

160	Efficient Co@CoPx coreBhell nanochains catalyst for the oxygen evolution reaction. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1844-1848	6.8	7
159	Capacitive lithium storage of lithiated mesoporous titania. <i>Materials Today Energy</i> , 2018 , 9, 240-246	7	10
158	Excitation wavelength dependent fluorescence of graphene oxide controlled by strain. <i>Nanoscale</i> , 2017 , 9, 2240-2245	7.7	15
157	In Situ Growth Enabling Ideal Graphene Encapsulation upon Mesocrystalline MTiO3 (M = Ni, Co, Fe) Nanorods for Stable Lithium Storage. <i>ACS Energy Letters</i> , 2017 , 2, 659-663	20.1	32
156	The Black and White Issue of Nanotitania 2017 , 77-117		
155	Low-cost and massive preparation of nitrogen-doped porous carbon for supercapacitor application. <i>RSC Advances</i> , 2017 , 7, 10901-10905	3.7	18
154	A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible. <i>Advanced Materials</i> , 2017 , 29, 1700136	24	173
153	Boosting Supercapacitor Performance of TiO2 Nanobelts by Efficient Nitrogen Doping. <i>ChemElectroChem</i> , 2017 , 4, 2328-2335	4.3	9
152	Selenium doping NaCl-type superconductor: SnAs 1 Se x (x=0 \overline{D} .13). <i>Journal of Solid State Chemistry</i> , 2017 , 252, 106-110	3.3	3
151	Controlled Phase Evolution from Co Nanochains to CoO Nanocubes and Their Application as OER Catalysts. <i>ACS Energy Letters</i> , 2017 , 2, 1208-1213	20.1	73
150	Conductive Carbon Nitride for Excellent Energy Storage. Advanced Materials, 2017, 29, 1701674	24	112
149	High-quality single-layer nanosheets of MS2 (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS2 (A = Li, Na, K) crystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5977-5983	7.1	23
148	Tunable synthesis of Fe-Ge alloy confined in oxide matrix and its application for energy storage. Journal of Power Sources, 2017 , 360, 124-128	8.9	14
147	Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. <i>Carbon</i> , 2017 , 118, 511-516	10.4	40
146	Efficient Charge Separation of In-Situ Nb-Doped TiO2 Nanowires for Photoelectrochemical Water Bplitting. <i>ChemistrySelect</i> , 2017 , 2, 2822-2827	1.8	12
145	Enhanced Superconductivity in Restacked TaS Nanosheets. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4623-4626	16.4	62
144	Enhanced Superconductivity in Rock-Salt TiO. ACS Omega, 2017, 2, 1036-1039	3.9	21
143	Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. <i>Dalton Transactions</i> , 2017 , 46, 1047-1051	4.3	38

142	Intermediate bands of MoS2 enabled by Co doping for enhanced hydrogen evolution. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 1895-1899	6.8	25
141	Atom-scale dispersed palladium in a conductive Pd0.1TaS2 lattice with a unique electronic structure for efficient hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22618-22624	13	14
140	Observation of superconductivity in 1T?-MoS2 nanosheets. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10855-10860	7.1	60
139	Efficient Conversion of CO2 to Methane Photocatalyzed by Conductive Black Titania. <i>ChemCatChem</i> , 2017 , 9, 4389-4396	5.2	34
138	An Intermediate Band Material K2CdSnSe4 and Its Visible-Light Photocatalytic Activity. <i>ChemistrySelect</i> , 2017 , 2, 5655-5659	1.8	2
137	Prominent Electron Penetration through Ultrathin Graphene Layer from FeNi Alloy for Efficient Reduction of CO to CO. <i>ChemSusChem</i> , 2017 , 10, 3044-3048	8.3	14
136	Facile Synthesis, Magnetic and Electric Characterization of Mixed Valence LaKAMnTiO (A = Sr and Ba) Perovskites. <i>Inorganic Chemistry</i> , 2017 , 56, 10404-10411	5.1	8
135	Variable texture few-layer ordered macroporous carbon for high-performance electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25171-25176	13	6
134	Hierarchical Ni/NiTiO3 derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24767-24774	13	31
133	Effects of Iron Doping on the Physical Properties of Quaternary Ferromagnetic Sulfide: BaFeVS. <i>Inorganic Chemistry</i> , 2017 , 56, 8302-8310	5.1	1
132	A novel ultralight three-dimensional house-of-cards titania monolith for extraordinary heavy-metal adsorption. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15724-15729	13	9
131	Facile sol-gel method combined with chemical vapor deposition for mesoporous few-layer carbon. <i>Carbon</i> , 2017 , 112, 47-52	10.4	12
130	Graphene-like carbon with three-dimensional periodicity prepared from organic-inorganic templates for energy storage application. <i>Carbon</i> , 2017 , 111, 128-132	10.4	13
129	Atomic-Sized Pores Enhanced Electrocatalysis of TaS Nanosheets for Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 8945-8949	24	121
128	Synthesis, structure, and optical properties of K2.4Ga2.4M1.6Q8 (M = Si, Ge; Q = S, Se) crystals and glasses. <i>RSC Advances</i> , 2016 , 6, 76789-76794	3.7	О
127	Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15698-15	704	28
126	Semiconductive KMSbS(SH) (M = Zn, Cd) Featuring One-Dimensional [MSbS(SH)] Chains. <i>Inorganic Chemistry</i> , 2016 , 55, 9742-9747	5.1	14
125	Crystal Growth, Structure, Resistivity, Magnetic, and Photoelectric Properties of One-Dimensional Selenometallate Ba BiFeSe. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3436-3442	4.5	6

(2016-2016)

124	Hydrogen plasma reduced black TiO2B nanowires for enhanced photoelectrochemical water-splitting. <i>Journal of Power Sources</i> , 2016 , 325, 697-705	8.9	46
123	Direct synthesis of ethanol via CO hydrogenation using supported gold catalysts. <i>Chemical Communications</i> , 2016 , 52, 14226-14229	5.8	43
122	Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS. <i>Scientific Reports</i> , 2016 , 6, 31077	4.9	10
121	Constructing Black Titania with Unique Nanocage Structure for Solar Desalination. <i>ACS Applied Materials & Desalination (Nature of Solar Desalination)</i> (1997) <i>Materials & Desalination (Nature of Solar Desalination)</i> (1997) (1	9.5	210
120	Rational design of cobaltthromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11292-11298	13	116
119	New Graphene Form of Nanoporous Monolith for Excellent Energy Storage. <i>Nano Letters</i> , 2016 , 16, 349	- 54 .5	86
118	Synthesis, crystal structure, electronic structure, and photoelectric response properties of KCu2SbS3. <i>Dalton Transactions</i> , 2016 , 45, 3473-9	4.3	25
117	Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. <i>Dalton Transactions</i> , 2016 , 45, 3888-94	4.3	81
116	Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. <i>Biomaterials</i> , 2016 , 84, 13-24	15.6	157
115	Hierarchical MnO2 Spheres Decorated by Carbon-Coated Cobalt Nanobeads: Low-Cost and High-Performance Electrode Materials for Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 8452-9	9.5	63
114	Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. <i>Nanoscale</i> , 2016 , 8, 4705-12	7.7	74
113	Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent. <i>Nanoscale</i> , 2016 , 8, 4054-62	7.7	48
112	Gray Ta2O5 Nanowires with Greatly Enhanced Photocatalytic Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 122-7	9.5	53
111	Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 167-172	13	120
110	Progress in Black Titania: A New Material for Advanced Photocatalysis. <i>Advanced Energy Materials</i> , 2016 , 6, 1600452	21.8	193
109	Template-free assembling Ni nanoparticles to a 3D hierarchical structure for superior performance supercapacitors. <i>RSC Advances</i> , 2016 , 6, 29519-29523	3.7	2
108	Solvothermal synthesis, structure and physical properties of Cs[Cr(en)2MSe4] (M = Ge, Sn) with [MSe4](4-) tetrahedra as chelating ligand. <i>Dalton Transactions</i> , 2016 , 45, 9097-102	4.3	6
107	Preparation of three-dimensional free-standing nano-LiFePO4/graphene composite for high performance lithium ion battery. <i>RSC Advances</i> , 2016 , 6, 52279-52283	3.7	16

106	A modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells. <i>RSC Advances</i> , 2016 , 6, 42377-42381	3.7	21
105	Co nanoparticles embedded in a 3D CoO matrix for electrocatalytic hydrogen evolution. <i>RSC Advances</i> , 2016 , 6, 38515-38520	3.7	15
104	An electron injection promoted highly efficient electrocatalyst of FeNi3@GR@Fe-NiOOH for oxygen evolution and rechargeable metallir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7762-7	7721	55
103	Preparation of Sn-doped CuAlS2 films with an intermediate band and wide-spectrum solar response. <i>RSC Advances</i> , 2016 , 6, 40806-40810	3.7	19
102	Synthesis, crystal structure and physical properties of FeV4S8 and KFe2V8S16. <i>RSC Advances</i> , 2016 , 6, 8277-8281	3.7	О
101	Efficient catalyst of defective CeO2⊠ and few-layer carbon hybrid for oxygen reduction reaction. Journal of Alloys and Compounds, 2016, 688, 613-618	5.7	30
100	In situ grown Nb4N5 nanocrystal on nitrogen-doped graphene as a novel anode for lithium ion battery. <i>RSC Advances</i> , 2016 , 6, 81290-81295	3.7	21
99	Ti-Promoted High Oxygen-Reduction Activity of Pd Nanodots Supported by Black Titania Nanobelts. <i>ACS Applied Materials & Discrete Supported Science Science</i> , 2016, 8, 27654-27660	9.5	37
98	Ammonia and iron cointercalated iron sulfide (NH3)Fe0.25Fe2S2: hydrothermal synthesis, crystal structure, weak ferromagnetism and crossover from a negative to positive magnetoresistance. <i>RSC Advances</i> , 2016 , 6, 81886-81893	3.7	11
97	Large-Scale Fabrication of Graphene-like Carbon Nanospheres for Lithium Ion Battery Application. <i>Electrochimica Acta</i> , 2016 , 218, 237-242	6.7	6
96	Three-dimensional porous graphene-like carbon cloth from cotton as a free-standing lithium-ion battery anode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11762-11767	13	30
95	Observation of Superconductivity in Tetragonal FeS. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10148-51	16.4	134
94	Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. <i>Nature Communications</i> , 2015 , 6, 6499	17.4	141
93	PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7086-7092	13	170
92	Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu8Sn6S24](z-) Clusters. <i>Inorganic Chemistry</i> , 2015 , 54, 5301-8	5.1	24
91	Black nanostructured Nb2O5 with improved solar absorption and enhanced photoelectrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11830-11837	13	66
90	Molten salt assisted synthesis of black titania hexagonal nanosheets with tuneable phase composition and morphology. <i>RSC Advances</i> , 2015 , 5, 85928-85932	3.7	18
89	Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors. <i>ACS Applied Materials & Mater</i>	9.5	17

(2014-2015)

88	Carbon microtube/graphene hybrid structures for thermal management applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18706-18710	13	16
87	Tailoring the photocatalytic activity of layered perovskites by opening the interlayer vacancy via ion-exchange reactions. <i>CrystEngComm</i> , 2015 , 17, 8703-8709	3.3	6
86	Black strontium titanate nanocrystals of enhanced solar absorption for photocatalysis. <i>CrystEngComm</i> , 2015 , 17, 7528-7534	3.3	35
85	Colored titania nanocrystals and excellent photocatalysis for water cleaning. <i>Catalysis Communications</i> , 2015 , 60, 55-59	3.2	32
84	Synthesis of Highly Stable Graphene-Encapsulated Iron Nanoparticles for Catalytic Syngas Conversion. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 29-34	3.1	27
83	Synthesis, crystal structure and physical properties of [Li0.85Fe0.15OH][FeS]. <i>RSC Advances</i> , 2015 , 5, 38248-38253	3.7	16
82	Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting. <i>ChemCatChem</i> , 2015 , 7, 2614-2619	5.2	59
81	A new tubular graphene form of a tetrahedrally connected cellular structure. <i>Advanced Materials</i> , 2015 , 27, 5943-9	24	163
80	Synthesis, structure, magnetic and photoelectric properties of Ln3M0.5M?Se7 (Ln = La, Ce, Sm; M = Fe, Mn; M? = Si, Ge) and La3MnGaSe7. <i>RSC Advances</i> , 2015 , 5, 52629-52635	3.7	10
79	Synthesis, Crystal Structure, and Photoelectric Properties of a New Layered Bismuth Oxysulfide. <i>Inorganic Chemistry</i> , 2015 , 54, 5768-73	5.1	38
78	Enhanced Performance of Perovskite CH3NH3PbI3 Solar Cell by Using CH3NH3I as Additive in Sequential Deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 12937-42	9.5	73
77	Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. <i>Science</i> , 2015 , 350, 1508-13	33.3	1530
76	OrganicIhorganic halide perovskite based solar cells Irevolutionary progress in photovoltaics. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 315-335	6.8	55
75	Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to superconducting Bi4O4S3. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4442-8	9.5	79
74	Black titanium dioxide (TiO2) nanomaterials. <i>Chemical Society Reviews</i> , 2015 , 44, 1861-85	58.5	958
73	Highly Conductive Ordered Mesoporous Carbon Based Electrodes Decorated by 3D Graphene and 1D Silver Nanowire for Flexible Supercapacitor. <i>Advanced Functional Materials</i> , 2014 , 24, 2013-2019	15.6	207
72	Heat transport enhancement of thermal energy storage material using graphene/ceramic composites. <i>Carbon</i> , 2014 , 75, 314-321	10.4	61
71	Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 419-26	16.4	139

7°	Directional architecture of graphene/ceramic composites with improved thermal conduction for thermal applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2187-2193	13	32
69	Origin of strong excitation wavelength dependent fluorescence of graphene oxide. <i>ACS Nano</i> , 2014 , 8, 1002-13	16.7	280
68	A three-dimensional elastic macroscopic graphene network for thermal management application. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18215-18218	13	26
67	Semiconductor Pb2P2S6 and size-dependent band gap energy of its nanoparticles. <i>RSC Advances</i> , 2014 , 4, 34288-34293	3.7	9
66	Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8612-8616	13	296
65	TiO2 nanotubes grown on graphene sheets as advanced anode materials for high rate lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 36372	3.7	12
64	Low temperature synthesis and structures of alkaline earth metal chalcogenides Ba3Cu4SbS6OH, BaCuSbS3 and BaCu2S2. <i>RSC Advances</i> , 2014 , 4, 28937	3.7	12
63	Quaternary sulfide Ba6Zn6ZrS14: synthesis, crystal structure, band structure, and multiband physical properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 5977-82	4.8	17
62	Facile synthesis, magnetic, electrical and photoelectric properties of layered quaternary chalcogenides K2FeCu3Q4 ($Q = S$ and Se). CrystEngComm, 2014 , 16, 1810	3.3	17
61	Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11107	13	106
60	Synthesis and characterization of a novel quaternary chalcogenide KBiCu2S3. <i>Journal of Alloys and Compounds</i> , 2014 , 591, 6-10	5.7	9
59	A facile molecular precursor-based Cu(In,Ga)(S,Se)2 solar cell with 8.6% efficiency. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13237	13	19
58	Ag3Ga3SiSe8: a new infrared nonlinear optical material with a chalcopyrite structure. <i>CrystEngComm</i> , 2014 , 16, 6836	3.3	26
57	Effective nonmetal incorporation in black titania with enhanced solar energy utilization. <i>Energy and Environmental Science</i> , 2014 , 7, 967	35.4	317
56	Synthesis of nanostructured La 2 O 3 /La 2 O 2 CO 3 :Eu phosphors from arc-discharged graphene-contained composites. <i>Materials Letters</i> , 2014 , 134, 176-179	3.3	8
55	Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. <i>Energy and Environmental Science</i> , 2013 , 6, 3007	35.4	543
54	Thermoelectric properties of CulnTe2/graphene composites. <i>CrystEngComm</i> , 2013 , 15, 6648	3.3	51
53	In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8897	13	58

(2013-2013)

52	Black brookite titania with high solar absorption and excellent photocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9650	13	150
51	Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2:Ce3+,Eu2+,Eu3+ phosphor. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5892	7.1	63
50	Fe-substituted indium thiospinels: New intermediate band semiconductors with better absorption of solar energy. <i>Journal of Applied Physics</i> , 2013 , 113, 213509	2.5	21
49	Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17831-8	16.4	370
48	Enhanced Cl2 sensing performance by decorating discrete Au nanoparticles on octahedral CdIn2O4 crystals. <i>CrystEngComm</i> , 2013 , 15, 2929	3.3	3
47	Oriented single-crystalline nickel sulfide nanorod arrays: Ewo-in-one Lounter electrodes for dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 194-198	13	55
46	Facile and economical exfoliation of graphite for mass production of high-quality graphene sheets. Journal of Materials Chemistry A, 2013 , 1, 500-504	13	79
45	New high T(c) multiferroics KBiFeDIwith narrow band gap and promising photovoltaic effect. <i>Scientific Reports</i> , 2013 , 3, 1265	4.9	160
44	Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and grapheneBulfur composites for high-performance lithium-sulfur batteries. <i>Energy and Environmental Science</i> , 2013 , 6, 1283	35.4	216
43	Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage. <i>Advanced Functional Materials</i> , 2013 , 23, 2263-2269	15.6	240
42	Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7942	13	33
41	Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices. <i>RSC Advances</i> , 2013 , 3, 8454	3.7	46
40	H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. <i>Advanced Functional Materials</i> , 2013 , 23, 5444-5450	15.6	532
39	Controllable Synthesis of Cu2In2ZnS5 Nano/Microcrystals and Hierarchical Films and Applications in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10296-10301	3.8	30
38	Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 770-775	13	120
37	New facile synthesis of TiO2 hollow sphere with an opening hole and its enhanced rate performance in lithium-ion batteries. <i>New Journal of Chemistry</i> , 2013 , 37, 784	3.6	29
36	Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. <i>Scientific Reports</i> , 2013 , 3, 1286	4.9	90
35	Selected-control hydrothermal growths of <code>Hand</code> <code>PbO</code> crystals and orientated pressure-induced phase transition. <i>CrystEngComm</i> , 2013 , 15, 3513-3516	3.3	10

34	Robust and stable intercalated graphene encapsulation of tin nanorods for enhanced cycle and capacity performance for lithium storage. <i>RSC Advances</i> , 2013 , 3, 21588	3.7	11
33	Cr incorporation in CuGaS2 chalcopyrite: A new intermediate-band photovoltaic material with wide-spectrum solar absorption. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 1098-1102	1.6	57
32	Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. <i>Chemistry - A European Journal</i> , 2013 , 19, 13313-6	4.8	64
31	Autonomously Controlled Homogenous Growth of Wafer-Sized High-Quality Graphene via a Smart Janus Substrate. <i>Advanced Functional Materials</i> , 2012 , 22, 1033-1039	15.6	39
30	CuSbSe2-assisted sintering of CuInSe2 at low temperature. <i>Journal of Materials Science</i> , 2012 , 47, 7085-	7 μ§ 9	20
29	Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. Journal of Materials Chemistry, 2012 , 22, 411-416		154
28	Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. <i>ACS Nano</i> , 2012 , 6, 9068-78	16.7	81
27	Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11257		122
26	One-Step Hydrothermal Synthesis of High-Performance Gas-Sensing Crystals CdIn2O4 with Octahedral Shape. <i>Crystal Growth and Design</i> , 2012 , 12, 4104-4108	3.5	11
25	Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2859		27
24	Novel Cu Nanowires/Graphene as the Back Contact for CdTe Solar Cells. <i>Advanced Functional Materials</i> , 2012 , 22, 1267-1271	15.6	73
23	The production of large bilayer hexagonal graphene domains by a two-step growth process of segregation and surface-catalytic chemical vapor deposition. <i>Carbon</i> , 2012 , 50, 2703-2709	10.4	29
22	Mesoporous hollow TiO2 microspheres with enhanced photoluminescence prepared by a smart amino acid template. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4888		44
21	Anomalous paramagnetism in graphene on hexagonal boron nitride substrates. <i>Physical Review B</i> , 2011 , 84,	3.3	16
20	Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. <i>Nanoscale</i> , 2011 , 3, 5103	7.7	259
19	A facile preparation route for boron-doped graphene, and its CdTe solar cell application. <i>Energy and Environmental Science</i> , 2011 , 4, 862-865	35.4	186
18	Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17366		84
17	Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. <i>Advanced Materials</i> , 2011 , 23, 3202-6	24	123

LIST OF PUBLICATIONS

16	Non-Aqueous Preparation of High-Crystallinity Hierarchical TiO2 Hollow Spheres with Excellent Photocatalytic Efficiency. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 2879-2883	2.3	27
15	Biomolecule-assisted route to prepare titania mesoporous hollow structures. <i>Chemistry - A European Journal</i> , 2011 , 17, 11535-41	4.8	32
14	Low-temperature rapid synthesis of high-quality pristine or boron-doped graphenevia Wurtz-type reductive coupling reaction. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10685		60
13	Quasi-linear dependence of cation filling on the photocatalysis of A(x)BO3-based tunnel compounds. <i>Dalton Transactions</i> , 2011 , 40, 6906-11	1.3	13
12	A one-pot method to grow pyrochlore H4Nb2O7-octahedron-based photocatalyst. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1942		36
11	Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes: Efficient Electron Injection and Transfer. <i>Advanced Functional Materials</i> , 2010 , 20, 509-515	15.6	473
10	Dielectric Constant Controlled Solvothermal Synthesis of a TiO2 Photocatalyst with Tunable Crystallinity: A Strategy for Solvent Selection. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 2789 ²	2 ³ 795	46
9	Structure-dependent photocatalytic activities of MWO4 (M = Ca, Sr, Ba). <i>Journal of Molecular Catalysis A</i> , 2009 , 302, 54-58		92
8	Photocatalytic activity of a sillenite-type material Bi25GaO39. Catalysis Communications, 2008, 9, 572-57	9 .2	32
7	Visible-light-responsive photocatalysts xBiOBr[∏]BiOI. <i>Catalysis Communications</i> , 2008 , 9, 8-12 3	3.2	224
6	xBiOI[1] BiOCl as efficient visible-light-driven photocatalysts. <i>Scripta Materialia</i> , 2007 , 56, 669-672	5 .6	163
5	Tailoring Conductive 3D Porous Hard Carbon for Supercapacitors. <i>Energy Technology</i> ,2101103	3.5	1
4	Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 Li4Ti5O12 pouch cells. <i>Nature Energy</i> ,	52.3	19
3	Achieving highly stable Sn-based anode by a stiff encapsulation heterostructure. <i>Science China Materials</i> ,1	7.1	2
2	Design rules of pseudocapacitive electrode materials: ion adsorption, diffusion, and electron transmission over prototype TiO2. <i>Science China Materials</i> ,1	7.1	1
1	A Dual-Functional Titanium Nitride Chloride Layered Matrix with Facile Lithium-Ion Diffusion Path and Decoupled Electron Transport as High-Capacity Anodes. <i>Advanced Functional Materials</i> ,2112074	15.6	1