Brian P Chadwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/130570/publications.pdf

Version: 2024-02-01

46 papers 3,337 citations

236612 25 h-index 233125 45 g-index

46 all docs

46 docs citations

46 times ranked

4244 citing authors

#	Article	IF	CITATIONS
1	Deletion of the XIST promoter from the human inactive X chromosome compromises polycomb heterochromatin maintenance. Chromosoma, 2021, 130, 177-197.	1.0	4
2	CRISPR mediated targeting of DUX4 distal regulatory element represses DUX4 target genes dysregulated in Facioscapulohumeral muscular dystrophy. Scientific Reports, 2021, 11, 12598.	1.6	13
3	BAZ1B the Protean Protein. Genes, 2021, 12, 1541.	1.0	7
4	Characterization of chromatin at structurally abnormal inactive X chromosomes reveals potential evidence of a rare hybrid active and inactive isodicentric X chromosome. Chromosome Research, 2020, 28, 155-169.	1.0	4
5	Characterization of the ICCE Repeat in Mammals Reveals an Evolutionary Relationship with the DXZ4 Macrosatellite through Conserved CTCF Binding Motifs. Genome Biology and Evolution, 2018, 10, 2190-2204.	1.1	4
6	Loss of SETDB1 decompacts the inactive X chromosome in part through reactivation of an enhancer in the IL1RAPL1 gene. Epigenetics and Chromatin, 2018, 11, 45.	1.8	12
7	Influence of Repressive Histone and DNA Methylation upon D4Z4 Transcription in Non-Myogenic Cells. PLoS ONE, 2016, 11, e0160022.	1.1	56
8	Deletion of <i>DXZ4</i> on the human inactive X chromosome alters higher-order genome architecture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4504-12.	3.3	239
9	Two novel DXZ4-associated long noncoding RNAs show developmental changes in expression coincident with heterochromatin formation at the human (Homo sapiens) macrosatellite repeat. Chromosome Research, 2015, 23, 733-752.	1.0	16
10	A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Research, 2014, 42, 6421-6435.	6.5	11
11	A region of euchromatin coincides with an extensive tandem repeat on the mouse (Mus musculus) inactive X chromosome. Chromosome Research, 2014, 22, 335-350.	1.0	3
12	Boosting transcription by transcription: enhancer-associated transcripts. Chromosome Research, 2013, 21, 713-724.	1.0	26
13	Molecular versatility: the many faces and functions of noncoding RNA. Chromosome Research, 2013, 21, 555-559.	1.0	3
14	Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics, 2013, 14, 740.	1.2	23
15	YY1 associates with the macrosatellite DXZ4 on the inactive X chromosome and binds with CTCF to a hypomethylated form in some male carcinomas. Nucleic Acids Research, 2012, 40, 1596-1608.	6.5	19
16	The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biology, 2012, 13, R70.	13.9	39
17	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	1.8	265
18	The WSTF-ISWI Chromatin Remodeling Complex Transiently Associates with the Human Inactive X Chromosome during Late S-Phase Prior to BRCA1 and γ-H2AX. PLoS ONE, 2012, 7, e50023.	1.1	9

#	Article	IF	Citations
19	The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. Human Molecular Genetics, 2012, 21, 4367-4377.	1.4	70
20	Characterization of DXZ4 conservation in primates implies important functional roles for CTCF binding, array expression and tandem repeat organization on the X chromosome. Genome Biology, 2011, 12, R37.	13.9	24
21	Variation in Array Size, Monomer Composition and Expression of the Macrosatellite DXZ4. PLoS ONE, 2011, 6, e18969.	1.1	19
22	Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. BMC Genomics, 2010, 11, 632.	1.2	37
23	The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma, 2009, 118, 445-457.	1.0	37
24	Macrosatellite epigenetics: the two faces of DXZ4 and D4Z4. Chromosoma, 2009, 118, 675-681.	1.0	24
25	The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. Journal of Experimental Medicine, 2008, 205, 785-798.	4.2	169
26	DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Research, 2008, 18, 1259-1269.	2.4	95
27	The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. Journal of Cell Biology, 2008, 180, i19-i19.	2.3	0
28	The XIST Noncoding RNA Functions Independently of BRCA1 in X Inactivation. Cell, 2007, 128, 977-989.	13.5	66
29	Variation in Xi chromatin organization and correlation of the H3K27me3 chromatin territories to transcribed sequences by microarray analysis. Chromosoma, 2007, 116, 147-157.	1.0	45
30	BRCA1 associates with the inactive X chromosome in late S-phase, coupled with transient H2AX phosphorylation. Chromosoma, 2005, 114, 432-439.	1.0	35
31	Beyond the Xi. Journal of Biological Chemistry, 2005, 280, 16437-16445.	1.6	38
32	Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17450-17455.	3.3	218
33	Ring1b-mediated H2A Ubiquitination Associates with Inactive X Chromosomes and Is Involved in Initiation of X Inactivation. Journal of Biological Chemistry, 2004, 279, 52812-52815.	1.6	221
34	Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biology, 2004, 5, R89.	13.9	28
35	Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Seminars in Cell and Developmental Biology, 2003, 14, 359-367.	2.3	43
36	SETting the Stage. Developmental Cell, 2003, 4, 445-447.	3.1	9

3

#	Article	lF	CITATIONS
37	Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Human Molecular Genetics, 2003, 12, 2167-2178.	1.4	114
38	Cell cycle–dependent localization of macroH2A in chromatin of the inactive X chromosome. Journal of Cell Biology, 2002, 157, 1113-1123.	2.3	102
39	Tissue-Specific Expression of a Splicing Mutation in the Gene Causes Familial Dysautonomia. American Journal of Human Genetics, 2001, 68, 598-605.	2.6	558
40	A Novel Chromatin Protein, Distantly Related to Histone H2a, Is Largely Excluded from the Inactive X Chromosome. Journal of Cell Biology, 2001, 152, 375-384.	2.3	192
41	Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Human Molecular Genetics, 2001, 10, 1101-1113.	1.4	150
42	Cloning, mapping, and expression of a novel brain-specific transcript in the Familial Dysautonomia candidate region on Chromosome 9q31. Mammalian Genome, 2000, 11, 81-83.	1.0	5
43	PHF2, a novel PHD finger gene located on human Chromosome 9q22. Mammalian Genome, 1999, 10, 294-298.	1.0	32
44	Cloning, genomic organization and expression of a putative human transmembrane protein related to the Caenorhabditis elegans M01F1.4 gene. Gene, 1999, 240, 67-73.	1.0	4
45	Cloning, Mapping, and Expression of Two Novel Actin Genes, Actin-like-7A (ACTL7A) and Actin-like-7B (ACTL7B), from the Familial Dysautonomia Candidate Region on 9q31. Genomics, 1999, 58, 302-309.	1.3	34
46	Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant Journal, 1995, 8, 785-794.	2.8	215