Thomas Heinze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1305609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acylation and carbanilation of cellulose in ionic liquids. Green Chemistry, 2006, 8, 301-306.	9.0	366
2	Ionic Liquids — Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose. Molecules, 2012, 17, 7458-7502.	3.8	285
3	Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromolecular Chemistry and Physics, 2000, 201, 627-631.	2.2	254
4	Functional Polymers Based on Dextran. , 2006, , 199-291.		205
5	Click Chemistry with Polysaccharides. Macromolecular Rapid Communications, 2006, 27, 208-213.	3.9	189
6	Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angewandte Makromolekulare Chemie, 1996, 238, 143-163.	0.2	185
7	Tailored Media for Homogeneous Cellulose Chemistry: Ionic Liquid/Coâ€Solvent Mixtures. Macromolecular Materials and Engineering, 2011, 296, 483-493.	3.6	136
8	Efficient Approach To Design Stable Water-Dispersible Nanoparticles of Hydrophobic Cellulose Esters. Biomacromolecules, 2008, 9, 1487-1492.	5.4	132
9	Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chemistry, 2013, 15, 989.	9.0	130
10	Cellulose modification and shaping $\hat{a} \in $ a review. Journal of Polymer Engineering, 2017, 37, 845-860.	1.4	125
11	Title is missing!. Angewandte Makromolekulare Chemie, 1994, 215, 93-106.	0.2	114
12	New Solvents for Cellulose: Dimethyl Sulfoxide/Ammonium Fluorides. Macromolecular Bioscience, 2007, 7, 307-314.	4.1	107
13	Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose, 2019, 26, 139-184.	4.9	107
14	Preparation and characterization of nanoparticles based on dextran–drug conjugates. Journal of Colloid and Interface Science, 2009, 338, 56-62.	9.4	98
15	Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose, 2013, 20, 2403-2416.	4.9	94
16	Nanoparticles on the Basis of Highly Functionalized Dextrans. Journal of the American Chemical Society, 2005, 127, 10484-10485.	13.7	91
17	A "click-chemistry―approach to cellulose-based hydrogels. Carbohydrate Polymers, 2011, 86, 154-161.	10.2	91
18	Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter, 2008, 4, 1169.	2.7	87

#	Article	IF	CITATIONS
19	Xylanâ€Based Nanoparticles: Prodrugs for Ibuprofen Release. Macromolecular Bioscience, 2010, 10, 211-220.	4.1	85
20	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomaterialia, 2016, 33, 203-212.	8.3	84
21	The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose, 2011, 18, 237-245.	4.9	83
22	4.2 Chemical characteristics of cellulose acetate. Macromolecular Symposia, 2004, 208, 167-238.	0.7	80
23	Recent Progress on Celluloseâ€Based Ionic Compounds for Biomaterials. Advanced Materials, 2021, 33, e2000717.	21.0	70
24	Nanoparticles Based on Hydrophobic Polysaccharide Derivatives—Formation Principles, Characterization Techniques, and Biomedical Applications. Macromolecular Bioscience, 2020, 20, e1900415.	4.1	69
25	Functional Polysaccharide Composite Nanoparticles from Cellulose Acetate and Potential Applications. Advanced Functional Materials, 2012, 22, 1749-1758.	14.9	66
26	Layer-By-Layer Decorated Nanoparticles with Tunable Antibacterial and Antibiofilm Properties against Both Gram-Positive and Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2018, 10, 3314-3323.	8.0	66
27	Layerâ€By‣ayer Coating of Aminocellulose and Quorum Quenching Acylase on Silver Nanoparticles Synergistically Eradicate Bacteria and Their Biofilms. Advanced Functional Materials, 2020, 30, 2001284.	14.9	63
28	Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydrate Polymers, 2012, 89, 526-536.	10.2	60
29	Aminoâ€Functionalized Cellulose Nanoparticles: Preparation, Characterization, and Interactions with Living Cells. Macromolecular Bioscience, 2012, 12, 920-925.	4.1	59
30	Recent Advances in Solvents for the Dissolution, Shaping and Derivatization of Cellulose: Quaternary Ammonium Electrolytes and their Solutions in Water and Molecular Solvents. Molecules, 2018, 23, 511.	3.8	56
31	Pure Cellulose Nanoparticles from Trimethylsilyl Cellulose. Macromolecular Symposia, 2010, 294, 96-106.	0.7	53
32	Molten imidazole – a starch solvent. Green Chemistry, 2014, 16, 1967.	9.0	50
33	Homogeneous Sulfation of Xylan from Different Sources. Macromolecular Materials and Engineering, 2011, 296, 551-561.	3.6	48
34	Solvent Effects on the NMR Chemical Shifts of Imidazoliumâ€Based Ionic Liquids and Cellulose Therein. Macromolecular Symposia, 2010, 294, 75-89.	0.7	46
35	Cellulose Derivatives. Springer Series on Polymer and Composite Materials, 2018, , .	0.7	45
36	Effective Approaches for Estimating the Functionalization Pattern of Carboxymethyl Starch of Different Origin. Starch/Staerke, 1999, 51, 11-16.	2.1	44

#	Article	IF	CITATIONS
37	Interactions of Ionic Liquids with Polysaccharides – 7: Thermal Stability of Cellulose in Ionic Liquids and <i>N</i> â€Methylmorpholineâ€ <i>N</i> â€oxide. Macromolecular Materials and Engineering, 2008, 293, 907-913.	3.6	43
38	Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. Journal of Materials Chemistry A, 2014, 2, 1107-1116.	10.3	43
39	Synthesis and aminolysis of polysaccharide carbonates. Cellulose, 2013, 20, 339-353.	4.9	42
40	Stimuli-responsive nanoparticles from ionic cellulose derivatives. Nanoscale, 2016, 8, 648-657.	5.6	42
41	Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing. Organic and Biomolecular Chemistry, 2009, 7, 1884.	2.8	41
42	Proteinâ€like Oligomerization of Carbohydrates. Angewandte Chemie - International Edition, 2011, 50, 8602-8604.	13.8	41
43	Cellulose Carbonates: A Platform for Promising Biopolymer Derivatives With Multifunctional Capabilities. Macromolecular Bioscience, 2015, 15, 735-746.	4.1	41
44	Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose, 2011, 18, 33-43.	4.9	38
45	Does bibliometric research confer legitimacy to research assessment practice? A sociological study of reputational control, 1972-2016. PLoS ONE, 2018, 13, e0199031.	2.5	37
46	Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose, 2013, 20, 751-760.	4.9	36
47	Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. Reactive and Functional Polymers, 2009, 69, 347-352.	4.1	35
48	Efficient Cellulose Solvent: Quaternary Ammonium Chlorides. Macromolecular Rapid Communications, 2013, 34, 1580-1584.	3.9	35
49	Sulfoethylated nanofibrillated cellulose: Production and properties. Carbohydrate Polymers, 2017, 169, 515-523.	10.2	33
50	Cellulose-polyhydroxylated fatty acid ester-based bioplastics with tuning properties: Acylation via a mixed anhydride system. Carbohydrate Polymers, 2017, 173, 312-320.	10.2	33
51	Novel Nanoparticles Based on Dextran Esters with Unsaturated Moieties. Macromolecular Rapid Communications, 2005, 26, 1908-1912.	3.9	32
52	Synthesis of highly functionalized dextran alkyl carbonates showing nanosphere formation. Carbohydrate Polymers, 2011, 83, 1112-1118.	10.2	32
53	Interactions of ionic liquids with polysaccharides. Ⅳ. Dendronization of 6â€azidoâ€6â€deoxy cellulose. Journal of Polymer Science Part A, 2008, 46, 3853-3859.	2.3	31
54	Semiâ€Synthetic Polysaccharide Sulfates as Anticoagulant Coatings for PET, 1 – Cellulose Sulfate. Macromolecular Bioscience, 2011, 11, 549-556.	4.1	31

#	Article	IF	CITATIONS
55	Enzymatic Functionalization of Cork Surface with Antimicrobial Hybrid Biopolymer/Silver Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 9792-9799.	8.0	31
56	Biofunctional Materials Based on Amino Cellulose Derivatives – A Nanobiotechnological Concept. Macromolecular Bioscience, 2016, 16, 10-42.	4.1	31
57	Synthesis of novel adamantoyl cellulose using differently activated carboxylic acid derivatives. Cellulose, 2002, 9, 193-201.	4.9	30
58	Novel Biopolymer Structures Synthesized by Dendronization of 6â€Đeoxyâ€6â€aminopropargyl cellulose. Macromolecular Rapid Communications, 2008, 29, 1739-1745.	3.9	30
59	Properties of spruce sulfite pulp and birch kraft pulp after sorption of cationic birch xylan. Cellulose, 2011, 18, 727-737.	4.9	30
60	Synthesis and characterization of novel amino cellulose esters. Cellulose, 2011, 18, 1315-1325.	4.9	30
61	Cellulose scaffolds with an aligned and open porosity fabricated via ice-templating. Cellulose, 2014, 21, 97-103.	4.9	29
62	Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules, 2018, 19, 3628-3636.	5.4	29
63	Non-Cytotoxic Agarose/Hydroxyapatite Composite Scaffolds for Drug Release. International Journal of Molecular Sciences, 2019, 20, 3565.	4.1	29
64	Synthesis of water-soluble cellulose esters applying carboxylic acid imidazolides. Polymer Bulletin, 2010, 64, 845-854.	3.3	27
65	Towards unnatural xylan based polysaccharides: reductive amination as a tool to access highly engineered carbohydrates. Cellulose, 2010, 17, 825-833.	4.9	27
66	Homogenous synthesis of 3-allyloxy-2-hydroxypropyl-cellulose in NaOH/urea aqueous system. Cellulose, 2012, 19, 925-932.	4.9	27
67	Homogeneous tosylation of agarose as an approach toward novel functional polysaccharide materials. Carbohydrate Polymers, 2015, 127, 236-245.	10.2	27
68	Induced Phase Separation: A New Synthesis Concept in Cellulose Chemistry. ACS Symposium Series, 1998, , 61-72.	0.5	26
69	Efficient Synthesis and Characterization of New Photoactive Dextran Esters Showing Nanosphere Formation. Macromolecular Bioscience, 2008, 8, 606-614.	4.1	26
70	Viscosity behaviour of multivalent metal ion-containing carboxymethyl cellulose solutions. Angewandte Makromolekulare Chemie, 1994, 220, 123-132.	0.2	25
71	Studies on the Stabilization of Modified Lyocell Solutions. Macromolecular Symposia, 2008, 262, 72-84.	0.7	25
72	Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-ionic conductor. Carbohydrate Polymers, 2019, 221, 29-36.	10.2	25

#	Article	IF	CITATIONS
73	Structure Design of Multifunctional Furoate and Pyroglutamate Esters of Dextran by Polymer-Analogous Reactions. Macromolecular Bioscience, 2007, 7, 297-306.	4.1	24
74	Protein–like fully reversible tetramerisation and super-association of an aminocellulose. Scientific Reports, 2014, 4, 3861.	3.3	24
75	Tailoring the Degree of Polymerization of Low Molecular Weight Cellulose. Macromolecular Materials and Engineering, 2011, 296, 802-809.	3.6	23
76	Synthesis and characterization of aminocellulose sulfates as novel ampholytic polymers. Cellulose, 2012, 19, 1305-1313.	4.9	23
77	Photoresponsive cellulose fibers by surface modification with multifunctional cellulose derivatives. Carbohydrate Polymers, 2014, 111, 280-287.	10.2	23
78	Pure, Transparentâ€Melting Starch Esters: Synthesis and Characterization. Macromolecular Rapid Communications, 2011, 32, 1312-1318.	3.9	22
79	Water soluble photoactive cellulose derivatives: synthesis and characterization of mixed 2-[(4-methyl-2-oxo-2H-chromen-7-yl)oxy]acetic acid–(3-carboxypropyl)trimethylammonium chloride esters of cellulose. Cellulose, 2012, 19, 1327-1335.	4.9	22
80	Incorporation of Hydrophobic Dyes within Cellulose Acetate and Acetate Phthalate Based Nanoparticles. Macromolecular Chemistry and Physics, 2016, 217, 1823-1833.	2.2	22
81	Synthesis of xylan carbonates – An approach towards reactive polysaccharide derivatives showing self-assembling into nanoparticles. Carbohydrate Polymers, 2018, 193, 45-53.	10.2	22
82	Synthesis and Carboxymethylation of Organo-Soluble Trifluoroacetates and Formates of Cellulose. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 613-626.	2.2	21
83	Synthesis path versus distribution of functional groups in cellulose ethers. Macromolecular Symposia, 1998, 130, 271-283.	0.7	21
84	Syntheses and detailed structure characterization of dextran carbonates. Carbohydrate Polymers, 2013, 93, 216-223.	10.2	21
85	Polysaccharide Nanoparticles Bearing HDAC Inhibitor as Nontoxic Nanocarrier for Drug Delivery. Macromolecular Bioscience, 2020, 20, 2000039.	4.1	21
86	Hot Topics in Polysaccharide Chemistry – Selected Examples. Macromolecular Symposia, 2009, 280, 15-27.	0.7	20
87	Probing the dependence of the properties of cellulose acetates and their films on the degree of biopolymer substitution: use of solvatochromic indicators and thermal analysis. Cellulose, 2010, 17, 937-951.	4.9	20
88	Furfuryl―and Maleimido Polysaccharides: Synthetic Strategies Toward Functional Biomaterials. Macromolecular Bioscience, 2018, 18, e1800258.	4.1	20
89	Determination of Percent Crystallinity of Side-Chain Crystallized Alkylated-Dextran Derivatives with Raman Spectroscopy and Multivariate Curve Resolution. Analytical Chemistry, 2016, 88, 4644-4650. –	6.5	19
90	Synthesis of diblock methylcellulose derivatives with regioselective functionalization patterns. Journal of Polymer Science Part A, 2011, 49, 4964-4976.	2.3	18

#	Article	IF	CITATIONS
91	Physicochemical Properties and Bioactivity of a Novel Class of Cellulosics: 6â€Deoxyâ€6â€amino Cellulose Sulfate. Macromolecular Chemistry and Physics, 2012, 213, 539-548.	2.2	18
92	Solventâ€free synthesis of 6â€deoxyâ€6â€(ωâ€aminoalkyl)amino cellulose. Journal of Applied Polymer Science, 2016, 133, .	2.6	18
93	Preparation of sodium cellulose sulfate oligomers by free-radical depolymerization. Carbohydrate Polymers, 2017, 173, 631-637.	10.2	18
94	Advanced characterization of regioselectively substituted methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy. Carbohydrate Polymers, 2021, 262, 117944.	10.2	18
95	Column: Cellulose. Polymer News, 2004, 29, 14-17.	0.1	17
96	3-O-Propyl cellulose: cellulose ether with exceptionally low flocculation temperature. Polymer Bulletin, 2011, 66, 1219-1229.	3.3	17
97	Physical properties of diblock methylcellulose derivatives with regioselective functionalization patterns: First direct evidence that a sequence of 2,3,6-tri-O-methyl-glucopyranosyl units causes thermoreversible gelation of methylcellulose. Journal of Polymer Science, Part B: Polymer Physics, 2011 49 1539-1546	2.1	17
98	Homogeneous Acetylation of Cellulose in the New Solvent Triethyloctylammonium Chloride in Combination with Organic Liquids. Macromolecular Chemistry and Physics, 2016, 217, 2041-2048.	2.2	17
99	Structural elucidation of a heteropolysaccharide from the wild mushroom Marasmiellus palmivorus and its immune-assisted anticancer activity. Carbohydrate Polymers, 2019, 211, 272-280.	10.2	17
100	Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS Applied Bio Materials, 2021, 4, 6719-6731.	4.6	17
101	Green fabrication of high strength, transparent cellulose-based films with durable fluorescence and UV-blocking performance. Journal of Materials Chemistry A, 2022, 10, 7811-7817.	10.3	17
102	The Role of Novel Solvents and Solution Complexes for the Preparation of Highly Engineered Cellulose Derivatives. ACS Symposium Series, 1998, , 2-18.	0.5	15
103	Advanced Cellulose Fibers for Efficient Immobilization of Enzymes. Biomacromolecules, 2016, 17, 3188-3197.	5.4	15
104	Synthesis and properties of thermoplastic starch laurates. Carbohydrate Research, 2019, 486, 107833.	2.3	15
105	Biocompatible sulfated valproic acid-coupled polysaccharide-based nanocarriers with HDAC inhibitory activity. Journal of Controlled Release, 2021, 329, 717-730.	9.9	15
106	Simple Synthesis of Reactive and Nanostructure Forming Hydrophobic Amino Cellulose Derivatives. Macromolecular Materials and Engineering, 2016, 301, 65-70.	3.6	14
107	Efficient and catalyst-free synthesis of cellulose acetoacetates. Cellulose, 2018, 25, 4919-4928.	4.9	14

7

4.9 13

#	Article	IF	CITATIONS
109	A promising cellulose-based polyzwitterion with pH-sensitive charges. Beilstein Journal of Organic Chemistry, 2014, 10, 1549-1556.	2.2	13
110	Reversibly Crystalline Nanoparticles from Cellulose Alkyl Esters via Nanoprecipitation. Particle and Particle Systems Characterization, 2015, 32, 258-266.	2.3	13
111	Synthesis and characterization of novel water-soluble and bactericidic cationic starch esters. Starch/Staerke, 2017, 69, 1700029.	2.1	13
112	Engineered Polysaccharides: αâ€1,3â€Glucan Acetates Showing Upper Critical Solution Temperature in Organic Solvents. Macromolecular Chemistry and Physics, 2019, 220, 1900112.	2.2	13
113	From North American hegemony to global competition for scientific leadership? Insights from the Nobel population. PLoS ONE, 2019, 14, e0213916.	2.5	13
114	Revisiting very disperse macromolecule populations in hydrodynamic and light scattering studies of sodium carboxymethyl celluloses. Carbohydrate Polymers, 2020, 229, 115452.	10.2	13
115	A novel polymeric stabilizing system for modified lyocell solutions. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1702-1713.	2.1	12
116	The removal of stickies with modified starch and chitosan—Highly cationic and hydrophobic types compared with unmodified ones. Carbohydrate Polymers, 2012, 90, 1712-1718.	10.2	12
117	Magnetic Biocomposites for Remote Melting. Biomacromolecules, 2015, 16, 2308-2315.	5.4	12
118	Polysaccharide valproates: Structure - property relationships in solution. Carbohydrate Polymers, 2020, 246, 116652.	10.2	12
119	Waterproof-breathable films from multi-branched fluorinated cellulose esters. Carbohydrate Polymers, 2021, 271, 118031.	10.2	12
120	Simple synthesis of mixed cellulose acylate phosphonates applying n-propyl phosphonic acid anhydride. Cellulose, 2012, 19, 523-531.	4.9	11
121	Preparation of reactive fibre interfaces using multifunctional cellulose derivatives. Carbohydrate Polymers, 2015, 132, 261-273.	10.2	11
122	Modular synthesis of non-charged and ionic xylan carbamate derivatives from xylan carbonates. Carbohydrate Polymers, 2019, 207, 782-790.	10.2	11
123	Stable nanocellulose gels prepared by crosslinking of surface charged cellulose nanofibrils with di- and triiodoalkanes. Cellulose, 2020, 27, 2053-2068.	4.9	11
124	Spatial Distribution of Functional Groups in Cellulose Ethers by DNP-Enhanced Solid-State NMR Spectroscopy. Macromolecules, 2022, 55, 2952-2958.	4.8	11
125	Charging Behavior and Stability of the Novel Amino Group Containing Cellulose Ester Celluloseâ€4â€{ <i>N</i> â€methylamino]butyrate Hydrochloride. Macromolecular Chemistry and Physics, 2012, 213, 1669-1676.	2.2	10
126	Employing perichromism for probing the properties of carboxymethyl cellulose films: an expedient, accurate method for the determination of the degree of substitution of the biopolymer derivative. Cellulose, 2012, 19, 151-159.	4.9	10

#	Article	IF	CITATIONS
127	Synthesis of Novel Cellulose Carbamates Possessing Terminal Amino Groups and Their Bioactivity. Macromolecular Bioscience, 2016, 16, 451-461.	4.1	10
128	Zwitterionic Cellulose Carbamate with Regioselective Substitution Pattern: A Coating Material Possessing Antimicrobial Activity. Macromolecular Bioscience, 2016, 16, 522-534.	4.1	10
129	Influence of wood pulp quality on the structure of carboxymethyl cellulose. Journal of Applied Polymer Science, 2019, 136, 47862.	2.6	10
130	Synthesis and characterization of dicarboxymethyl cellulose. Cellulose, 2020, 27, 1965-1974.	4.9	10
131	The first approach to non-aqueous solutions of carboxymethylcellulose. Macromolecular Rapid Communications, 1997, 18, 1033-1040.	3.9	9
132	Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose, 2012, 19, 2057-2067.	4.9	9
133	Film formation of ω-aminoalkylcellulose carbamates – A quartz crystal microbalance (QCM) study. Carbohydrate Polymers, 2015, 116, 111-116.	10.2	9
134	Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization. Catalysts, 2017, 7, 353.	3.5	9
135	Diversity of polysaccharide structures designed by aqueous Ugi-multi-compound reaction. Cellulose, 2018, 25, 2849-2859.	4.9	9
136	Synthesis of pyridine-free xylan sulfates. Carbohydrate Polymers, 2019, 206, 65-69.	10.2	9
137	Determination of the Binding Situation of Pyridine in Xylan Sulfates by Means of Detailed NMR Studies. Macromolecular Chemistry and Physics, 2020, 221, 1900327.	2.2	9
138	Effect of Sulfation Route and Subsequent Oxidation on Derivatization Degree and Biocompatibility of Cellulose Sulfates. Macromolecular Bioscience, 2020, 20, e1900403.	4.1	9
139	Fluorescent Polysaccharide Nanoparticles for pH-Sensing. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 671-673.	0.3	8
140	Phase Behaviour of Hydroxypropyl Cellulose/ Polyacrylamide Gels. Macromolecular Symposia, 2010, 296, 429-435.	0.7	8
141	Mixed 3-mono-O-alkyl cellulose: Synthesis, structure characterization and thermal properties. Carbohydrate Polymers, 2012, 90, 380-386.	10.2	8
142	Flocculation Efficiency of Novel Amphiphilic Starch Derivatives: A Comparative Study. Macromolecular Materials and Engineering, 2014, 299, 722-728.	3.6	8
143	Modification of pine pulp during oxygen delignification by xylan self-assembly. Carbohydrate Polymers, 2014, 112, 308-315.	10.2	8
144	Cationically modified 6-deoxy-6-azido cellulose as a water-soluble and reactive biopolymer derivative. Polymer Bulletin, 2015, 72, 473-485.	3.3	8

#	Article	IF	CITATIONS
145	Photocontrol of Mechanical Properties of Pulp Fibers and Fiberâ€toâ€Fiber Bonds via Selfâ€Assembled Polysaccharide Derivatives. Macromolecular Materials and Engineering, 2015, 300, 277-282.	3.6	8
146	Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran. Carbohydrate Polymers, 2017, 161, 1-9.	10.2	8
147	Reactive nanoparticles with activated ester moieties from cellulose acetate phthalate derivatives. Cellulose, 2019, 26, 475-490.	4.9	8
148	Protein repellent anti-coagulative mixed-charged cellulose derivative coatings. Carbohydrate Polymers, 2021, 254, 117437.	10.2	8
149	Reactive cellulose-based thin films – a concept for multifunctional polysaccharide surfaces. RSC Advances, 2016, 6, 72378-72385.	3.6	7
150	Cellulose carboxylate/tosylate mixed esters: Synthesis, properties and shaping into microspheres. Carbohydrate Polymers, 2016, 152, 79-86.	10.2	7
151	Evaluation of the Synthesis of Soluble Aromatic Cellulose Carbonates of Low Degree of Substitution. Macromolecular Chemistry and Physics, 2018, 219, 1800152.	2.2	7
152	All Sugar Based Cellulose Derivatives Synthesized by Azide–Alkyne Click Chemistry. Macromolecular Chemistry and Physics, 2020, 221, 1900343.	2.2	7
153	Influence of pulp characteristics on the properties of alkali cellulose. Cellulose, 2020, 27, 7227-7241.	4.9	7
154	α-1,3-Glucan benzoate – A novel polysaccharide derivative. Advanced Industrial and Engineering Polymer Research, 2020, 3, 71-76.	4.7	7
155	Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation. International Journal of Pharmaceutics, 2021, 601, 120567.	5.2	7
156	Thermal Stability of Lyocell Solutions: Experimental Results and Modeling Using Cluster Analysis and Partial Least Squares Regression. Macromolecular Theory and Simulations, 2008, 17, 32-38.	1.4	6
157	Studies on the structure of coumarin-modified dextran nanoparticles by fluorescence spectroscopy. Carbohydrate Polymers, 2013, 97, 45-51.	10.2	6
158	Studies on the sulfation of cellulose α-lipoate and ability of the sulfated product to stabilize colloidal suspensions of gold nanoparticles. Carbohydrate Polymers, 2015, 124, 117-123.	10.2	6
159	Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization. Inorganics, 2016, 4, 33.	2.7	6
160	Synthesis and structure characterization of soluble starch ethyl carbonates. Starch/Staerke, 2016, 68, 505-513.	2.1	6
161	Dissolution Capacity of Novel Cellulose Solvents Based on Triethyloctylammonium Chloride. Macromolecular Chemistry and Physics, 2017, 218, 1700208.	2.2	6
162	Non-aqueous solvent for efficient dissolution of polygalacturonic acid. Carbohydrate Polymers, 2019, 207, 791-795.	10.2	6

#	Article	IF	CITATIONS
163	Synthesis, characterization and ampyrone drug release behavior of magnetite nanoparticle/2,3-dialdehyde cellulose-6-phosphate composite. Cellulose, 2020, 27, 1603-1618.	4.9	6
164	Synthesis and characterization of branched polysaccharides by reaction of cellulose with 2,3,4,6-tetraacetyl-1-bromo-α-D-glucopyranoside. Arkivoc, 2012, 2012, 76-89.	0.5	6
165	Starch Derivatives of High Degree of Functionalization. 4. Homogeneous Tritylation of Starch and Subsequent Carboxymethylation. Starch/Staerke, 2001, 53, 261-268.	2.1	5
166	Studies on the Thermostability of Modified Lyocell Dopes. Macromolecular Symposia, 2005, 223, 213-224.	0.7	5
167	Synthesis of Biopolymerâ€Based Precursors for the Formation of Organic–Inorganic Hybrid Materials. Macromolecular Rapid Communications, 2018, 39, e1800199.	3.9	5
168	Neutral Polysaccharide from the Leaves of Pseuderanthemum carruthersii: Presence of 3-O-Methyl Galactose and Anti-Inflammatory Activity in LPS-Stimulated RAW 264.7 Cells. Polymers, 2019, 11, 1219.	4.5	5
169	Functional dextran amino acid ester particles derived from N-protected S-trityl-L-cysteine. Colloids and Surfaces B: Biointerfaces, 2019, 181, 561-566.	5.0	5
170	Quantitative science studies should be framed with middle-range theories and concepts from the social sciences. Quantitative Science Studies, 2020, 1, 983-992.	3.3	5
171	Mechanistic Considerations of Efficient Esterification of Starch with Propionic Anhydride/Lauric Acid in the Green Solvent Imidazole. Macromolecular Chemistry and Physics, 2020, 221, 2000264.	2.2	5
172	Synthesis and characterization of graft copolymers from natural fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2002, 51, 661-674.	3.4	4
173	Novel dextran derivatives with unconventional structure formed in an efficient one-pot reaction. Carbohydrate Research, 2016, 434, 77-82.	2.3	4
174	Surprising Insensitivity of Homogeneous Acetylation of Cellulose Dissolved in Triethyl(<i>n</i> â€octyl)ammonium Chloride/Molecular Solvent on the Solvent Polarity. Macromolecular Materials and Engineering, 2018, 303, 1800032.	3.6	4
175	Efficient heterogeneous synthesis of reactive polygalacturonic acid hydrazides. Carbohydrate Polymers, 2021, 261, 117838.	10.2	4
176	Institutional environments and breakthroughs in science. Comparison of France, Germany, the United Kingdom, and the United States. PLoS ONE, 2020, 15, e0239805.	2.5	4
177	Study on Synthesis and NMR Characterization of 2,3â€≺i>Oâ€Hydroxyethyl Cellulose Depending on Synthesis Conditions. Macromolecular Symposia, 2010, 294, 133-140.	0.7	3
178	Alkyl β-d-cellulosides: non-reducing cellulose mimics. Cellulose, 2011, 18, 1585-1598.	4.9	3
179	Adsorption Studies of Amino Cellulose on Cellulosics. Macromolecular Materials and Engineering, 2017, 302, 1700022.	3.6	3
180	Sulfoethylation of polysaccharides—A comparative study. Carbohydrate Polymers, 2020, 246, 116533.	10.2	3

11

#	Article	IF	CITATIONS
181	The Role of Formamidine Groups in Dextran Based Nonviral Vectors for Gene Delivery on Their Physicochemical and Biological Characteristics. Macromolecular Bioscience, 2021, 21, e2000220.	4.1	3
182	Composite nanoparticles derived by self-assembling of hydrophobic polysaccharide derivatives and lignin. Cellulose, 2022, 29, 3613-3620.	4.9	3
183	Short-Term Application of Magnetic Core-Shell Nanoparticles—Effect on Immune Cells. , 2010, , .		2
184	Development and validation of a capillary electrophoresis method for the characterization of sulfoethyl cellulose. Journal of Separation Science, 2016, 39, 4645-4652.	2.5	2
185	Reactive Maleimido Dextran Thin Films for Cysteine-Containing Surfaces Adsorbing BSA. Macromolecular Chemistry and Physics, 2017, 218, 1600535.	2.2	2
186	Studies About the Acylation of Starch in Dipolar Aprotic Solvents. Starch/Staerke, 2019, 71, 1900053.	2.1	2
187	Trimethylsilylation of Polygalacturonic Acid. Macromolecular Chemistry and Physics, 2019, 220, 1900002.	2.2	2
188	Green Fabrication of Highly Conductive Paper Electrodes via Interface Engineering with Aminocellulose. Macromolecular Rapid Communications, 2021, 42, 2000499.	3.9	2
189	Structure, thermal stability and electrical properties of c elluloseâ€6â€phosphate : development of a novel fast Naâ€ionic conductor. Polymer International, 2021, 70, 1290-1297.	3.1	2
190	Reactive Nanoparticles Derived from Polysaccharide Phenyl Carbonates. Molecules, 2021, 26, 4026.	3.8	2
191	CARBOXYMETHYLATION OF POLYSACCHARIDES – A COMPARATIVE STUDY. Cellulose Chemistry and Technology, 2020, 54, 835-844.	1.2	2
192	Protonation behavior of dextran amino acid esters. Turkish Journal of Chemistry, 2019, 43, 869-880.	1.2	1
193	Meltable fatty acid esters of $\hat{l}\pm 1,3$ -glucan as potential thermoplastics. Advanced Industrial and Engineering Polymer Research, 2020, 3, 111-119.	4.7	1
194	Comparative Studies on Regioselectivity of \hat{I}_{\pm} - and \hat{I}^2 -Linked Glucan Tosylation. Molecules, 2020, 25, 5382.	3.8	1
195	Starch Formates: Synthesis and Modification. Molecules, 2021, 26, 4882.	3.8	1
196	Macromol. Rapid Commun. 16/2014. Macromolecular Rapid Communications, 2014, 35, 1460-1460.	3.9	0
197	Macromol. Mater. Eng. 5/2018. Macromolecular Materials and Engineering, 2018, 303, 1870017.	3.6	0
198	Studies about the design of magnetic bionanocomposite. ChemistrySelect, 2020, .	1.5	0

#	Article	IF	CITATIONS
199	Debenzylation of Benzyl-Protected Methylcellulose. Polysaccharides, 2022, 3, 458-479.	4.8	0