List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1305412/publications.pdf Version: 2024-02-01

SHASHA 70U

#	Article	IF	CITATIONS
1	Substorm triggering by new plasma intrusion: THEMIS allâ€sky imager observations. Journal of Geophysical Research, 2010, 115, .	3.3	221
2	Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017. Space Weather, 2018, 16, 321-331.	3.7	95
3	Forecasting Global Ionospheric TEC Using Deep Learning Approach. Space Weather, 2020, 18, e2020SW002501.	3.7	80
4	On the generation/decay of the stormâ€enhanced density plumes: Role of the convection flow and fieldâ€aligned ion flow. Journal of Geophysical Research: Space Physics, 2014, 119, 8543-8559.	2.4	74
5	Substorm triggering by new plasma intrusion: Incoherentâ€scatter radar observations. Journal of Geophysical Research, 2010, 115, .	3.3	67
6	On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. Journal of Geophysical Research, 2009, 114, .	3.3	64
7	Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	64
8	Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. Journal of Geophysical Research: Space Physics, 2014, 119, 142-150.	2.4	58
9	Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles. Space Weather, 2019, 17, 285-298.	3.7	58
10	Multiâ€instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 2013, 118, 7798-7809.	2.4	53
11	Modeling subauroral polarization streams during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 2015, 120, 1738-1750.	2.4	52
12	Preonset time sequence of auroral substorms: Coordinated observations by allâ€ s ky imagers, satellites, and radars. Journal of Geophysical Research, 2010, 115, .	3.3	51
13	Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 2009, 114, .	3.3	49
14	Formation and Evolution of Low‣atitude <i>F</i> Region Fieldâ€Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations. Space Weather, 2018, 16, 648-659.	3.7	35
15	Coordinated Groundâ€Based and Spaceâ€Based Observations of Equatorial Plasma Bubbles. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027569.	2.4	34
16	What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 2021, 11, 42.	3.3	32
17	GPS TEC observations of dynamics of the mid-latitude trough during substorms. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	30
18	Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis. Journal of Geophysical Research: Space Physics, 2013, 118, 181-191.	2.4	29

#	Article	IF	CITATIONS
19	Statistical Analysis of Equatorial Plasma Irregularities Retrieved From Swarm 2013–2019 Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027022.	2.4	28
20	Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence. Journal of Geophysical Research, 2009, 114, .	3.3	27
21	The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects. Journal of Geophysical Research: Space Physics, 2016, 121, 10,880.	2.4	27
22	Statistical significance of association between whistlerâ€mode chorus enhancements and enhanced convection periods during highâ€speed streams. Journal of Geophysical Research, 2007, 112, .	3.3	26
23	The story of plumes: the development of a new conceptual framework for understanding magnetosphere and ionosphere coupling. Annales Geophysicae, 2016, 34, 1243-1253.	1.6	25
24	Statistical Analysis of the Main Ionospheric Trough Using Swarm in Situ Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027583.	2.4	25
25	Evidence that solar wind fluctuations substantially affect the strength of dayside ionospheric convection. Journal of Geophysical Research, 2009, 114, .	3.3	24
26	Identification of substorm onset location and preonset sequence using Reimei, THEMIS GBO, PFISR, and Geotail. Journal of Geophysical Research, 2010, 115, .	3.3	24
27	Electrodynamics of the highâ€latitude trough: Its relationship with convection flows and fieldâ€aligned currents. Journal of Geophysical Research: Space Physics, 2013, 118, 2565-2572.	2.4	21
28	PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2017, 122, 2589-2604.	2.4	19
29	Connections between plasma sheet transport, Region 2 currents, and entropy changes associated with convection, steady magnetospheric convection periods, and substorms. Journal of Geophysical Research, 2009, 114, .	3.3	18
30	Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation. Geophysical Research Letters, 2017, 44, 3047-3058.	4.0	17
31	Statistical Characteristics of Polar Cap Patches Observed by RISR . Journal of Geophysical Research: Space Physics, 2018, 123, 6981-6995.	2.4	17
32	Enhanced transport across entire length of plasma sheet boundary field lines leading to substorm onset. Journal of Geophysical Research, 2010, 115, .	3.3	16
33	Hemispheric Asymmetries in the Mid″atitude Ionosphere During the September 7–8, 2017 Storm: Multiâ€instrument Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028829.	2.4	16
34	PFISR observations of strong azimuthal flow bursts in the ionosphere and their relation to nightside aurora. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 729-737.	1.6	15
35	Smallâ€scale structure of the midlatitude storm enhanced density plume during the 17 March 2015 St. Patrick's Day storm. Journal of Geophysical Research: Space Physics, 2017, 122, 3665-3677.	2.4	15
36	An Ionosphere Specification Technique Based on Data Ingestion Algorithm and Empirical Orthogonal Function Analysis Method. Space Weather, 2018, 16, 1410-1423.	3.7	15

#	Article	IF	CITATIONS
37	Dissipation of Earthward Propagating Flux Rope Through Reâ€reconnection with Geomagnetic Field: An MMS Case Study. Journal of Geophysical Research: Space Physics, 2019, 124, 7477-7493.	2.4	15
38	Dynamic pressure enhancements as a cause of largeâ€scale stormtime substorms. Journal of Geophysical Research, 2008, 113, .	3.3	14
39	Mutual Evolution of Aurora and Ionospheric Electrodynamic Features Near the Harang Reversal During Substorms. Geophysical Monograph Series, 0, , 159-170.	0.1	14
40	Multi-scale ionosphere responses to the May 2017 magnetic storm over the Asian sector. GPS Solutions, 2020, 24, 1.	4.3	14
41	Ingestion of GIM-derived TEC data for updating IRI-2016 driven by effective IG indices over the European region. Journal of Geodesy, 2019, 93, 1911-1930.	3.6	13
42	ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications. Journal of Geophysical Research: Space Physics, 2015, 120, 494-510.	2.4	12
43	A Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979–2019 Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028584.	2.4	12
44	Reply to comment by Harald U. Frey on "Substorm triggering by new plasma intrusion: THEMIS allâ€sky imager observationsâ€: Journal of Geophysical Research, 2010, 115, .	3.3	11
45	Multiâ€instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection. Journal of Geophysical Research: Space Physics, 2019, 124, 1770-1784.	2.4	11
46	New Findings From Explainable SYMâ€H Forecasting Using Gradient Boosting Machines. Space Weather, 2022, 20, .	3.7	11
47	Auroral Disturbances as a Manifestation of Interplay Between Large-Scale and Mesoscale Structure of Magnetosphere-Ionosphere Electrodynamical Coupling. Geophysical Monograph Series, 0, , 193-204.	0.1	10
48	Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015. Journal of Geophysical Research: Space Physics, 2018, 123, 2974-2989.	2.4	10
49	Segmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current. Geophysical Research Letters, 2019, 46, 7920-7928.	4.0	10
50	Episodic Occurrence of Fieldâ€Aligned Energetic Ions on the Dayside. Geophysical Research Letters, 2020, 47, e2019GL086384.	4.0	9
51	A Statistical Study of Fâ€Region 3.2â€mâ€Scale Fieldâ€Aligned Irregularities Occurrence and Vertical Plasma Drift Over Hainan: Solar Activity, Season, and Magnetic Activity Dependences. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028932.	2.4	9
52	IMF <i>B</i> _{<i>y</i>} effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 5028-5042.	2.4	9
53	Poker flat radar observations of the magnetosphere–ionosphere coupling electrodynamics of the earthward penetrating plasma sheet following convection enhancements. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 717-728.	1.6	8
54	Categorization of the Time Sequence of Events Leading to Substorm Onset Based on THEMIS All-Sky Imager Observations. , 2011, , 133-142.		8

#	Article	IF	CITATIONS
55	Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 4430-4456.	2.4	8
56	Direct Observations of a Polar Cap Patch Formation Associated With Dayside Reconnection Driven Fast Flow. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027745.	2.4	5
57	COMPASS: A New COnductance Model Based on PFISR And SWARM Satellite Observations. Space Weather, 2022, 20, .	3.7	5
58	Response of the Geospace System to the Solar Wind Dynamic Pressure Decrease on 11 June 2017: Numerical Models and Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 2613-2627.	2.4	4
59	Statistical Study of Ion Upflow and Downflow Observed by PFISR. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028179.	2.4	4
60	Global Driving of Auroral Precipitation: 1. Balance of Sources. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
61	Highâ€ŧime resolution dayside convection monitoring by incoherent scatter radar and a sample application. Journal of Geophysical Research, 2008, 113, .	3.3	3
62	Hiss or equatorial noise? Ambiguities in analyzing suprathermal ion plasma wave resonance. Journal of Geophysical Research: Space Physics, 2016, 121, 9619-9631.	2.4	3
63	The Effect of <i>F</i> â€Layer Zonal Neutral Wind on the Monthly and Longitudinal Variability of Equatorial Ionosphere Irregularity and Drift Velocity. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027671.	2.4	3
64	Multiâ€Instrument Investigation of the Polar Holes. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029795.	2.4	3
65	Nightside Pi2 Wave Properties During an Extended Period With Stable Plasmapause Location and Variable Geomagnetic Activity. Journal of Geophysical Research: Space Physics, 2017, 122, 12,120.	2.4	2
66	Event Studies of O + Density Variability Within Quietâ€Time Plasma Sheet. Journal of Geophysical Research: Space Physics, 2019, 124, 4168-4187.	2.4	2
67	Impact of Storm-Enhanced Density (SED) on Ion Upflow Fluxes During Geomagnetic Storm. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	2
68	The Importance of the Plasmasphere Boundary Layer for Understanding Inner Magnetosphere Dynamics. Geophysical Monograph Series, 0, , 321-328.	0.1	1
69	Thank You to Our 2021 Peer Reviewers. Space Weather, 2022, 20, .	3.7	0