Chunhui Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304873/publications.pdf

Version: 2024-02-01

24 576 13 papers citations h-index

24 24 598
all docs docs citations times ranked citing authors

24

g-index

#	Article	IF	CITATIONS
1	A highly resilient and ⟨scp⟩ultraâ€sensitive⟨lscp⟩ hydrogel for wearable sensors. Journal of Applied Polymer Science, 2022, 139, 51925.	1.3	11
2	Super-Strong, Nonswellable, and Biocompatible Hydrogels Inspired by Human Tendons. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2638-2649.	4.0	52
3	From micelle-like aggregates to extremely-stretchable, fatigue-resistant, highly-resilient and self-healable hydrogels. European Polymer Journal, 2022, 167, 111047.	2.6	10
4	A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydrate Polymers, 2022, 286, 119268.	5.1	55
5	A highly elastic and sensitive sensor based on <scp>GSP</scp> / <scp>HPAM</scp> composited hydrogel. Journal of Applied Polymer Science, 2021, 138, 50192.	1.3	9
6	Effects of crystal planes of ZnO nanocrystal on crystalline, thermal and thermal-oxidation stability of iPP. Journal of Polymer Research, 2021, 28, 1.	1.2	4
7	Facile fabrication of tough and biocompatible hydrogels from polyvinyl alcohol and agarose. Journal of Applied Polymer Science, 2021, 138, 50979.	1.3	7
8	Facile fabrication of nonswellable and biocompatible hydrogels with cartilage-comparable performances. Materials Today Communications, 2021, 27, 102375.	0.9	5
9	An ultra-strong, ultra-stiff and anti-freezing hydrogel based on poly(vinyl alcohol). Materials Letters, 2021, 300, 130172.	1.3	9
10	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. Journal of Materials Chemistry C, 2021, 9, 17042-17049.	2.7	16
11	Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength. European Polymer Journal, 2020, 124, 109465.	2.6	70
12	Developing high strength, antiseptic and swelling-resistant polyvinyl alcohol/chitosan hydrogels for tissue engineering material. Materials Letters, 2020, 280, 128499.	1.3	18
13	Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels. Journal of Polymer Research, 2020, 27, 1.	1.2	15
14	Fabrication of selfâ€healable, conductive, and ultraâ€strong hydrogel from polyvinyl alcohol and grape seed–extracted polymer. Journal of Applied Polymer Science, 2020, 137, 49118.	1.3	22
15	A novel blend material to improve the crystallization and mechanical properties of poly (ethylene) Tj ETQq $1\ 1\ 0.7$	84314 rgB 1.2	T 4Overlock
16	The effect of sodium citrate and thermoplastic elastomer on the crystallization behavior and impact toughness of poly(ethylene terephthalate). Polymer Crystallization, 2019, 2, e10063.	0.5	1
17	Morphology Transition of Dualâ€Responsive ABC Terpolymer in Water: Effect of Hydrophobic Block. Macromolecular Chemistry and Physics, 2018, 219, 1800124.	1.1	8
18	UCST-Type Thermosensitive Hairy Nanogels Synthesized by RAFT Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 127-133.	2.3	63

Снимниі Luo

#	Article	IF	CITATION
19	Multi-responsive polymethacrylamide homopolymers derived from tertiary amine-modified -alanine. Polymer, 2016, 101, 319-327.	1.8	16
20	New thermal-responsive polymers based on alanine and (meth)acryl amides. Polymer Chemistry, 2014, 5, 4561.	1.9	32
21	Efficient synthesis and self-assembly of hetero-grafted amphiphilic polypepide bottlebrushes. Pure and Applied Chemistry, 2012, 84, 2569-2578.	0.9	6
22	Pathway-dependent re-assembly of dual-responsive ABC terpolymer in water. Soft Matter, 2012, 8, 2618.	1.2	36
23	Dual stimuli-responsive polymers derived from \hat{l}_{\pm} -amino acids: Effects of molecular structure, molecular weight and end-group. Polymer, 2012, 53, 1725-1732.	1.8	29
24	Thermo- and pH-Responsive Polymer Derived from Methacrylamide and Aspartic Acid. Macromolecules, 2010, 43, 8101-8108.	2.2	78