List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Magnetic and Color Reflectance Properties of Hematite: From Earth to Mars. Reviews of Geophysics, 2022, 60, .	9.0	37
2	Wheat and Maize Grown on Two Contrasting Zinc-deficient Calcareous Soils Respond Differently to Soil and Foliar Application of Zinc. Journal of Soil Science and Plant Nutrition, 2022, 22, 1718-1731.	1.7	9
3	Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. Chemosphere, 2022, 303, 135172.	4.2	21

Re-Visiting the Quantification of Hematite by Diffuse Reflectance Spectroscopy. Minerals (Basel,) Tj ETQq0 0 0 rgBT $_{0.8}^{/0}$ Vorlock 10 Tf 50 6

5	Optimum Olsen Phosphorus/Zinc DTPA ratio for the initial growth of maize in agricultural soils of the Mediterranean region. Journal of the Science of Food and Agriculture, 2021, 101, 3056-3064.	1.7	0
6	Zinc biofortification strategies for wheat grown on calcareous Vertisols in southern Spain: application method and rate. Plant and Soil, 2021, 462, 125-140.	1.8	7
7	Combining P and Zn fertilization to enhance yield and grain quality in maize grown on Mediterranean soils. Scientific Reports, 2021, 11, 7427.	1.6	12
8	Different Enrichment Patterns of Magnetic Particles Modulated by Primary Ironâ€Phosphorous Input. Geophysical Research Letters, 2020, 47, e2020GL090439.	1.5	3
9	Soil properties governing phosphorus adsorption in soils of Southern Brazil. Geoderma Regional, 2020, 22, e00318.	0.9	19
10	Soil Nutrients Effects on the Performance of Durum Wheat Inoculated with Entomopathogenic Fungi. Agronomy, 2020, 10, 589.	1.3	8
11	Effects of entomopathogenic fungi on growth and nutrition in wheat grown on two calcareous soils: Influence of the fungus application method. Annals of Applied Biology, 2020, 177, 26-40.	1.3	7
12	Crop use and profile distribution of phosphorus in soils that developed on mafic rocks in southern Portugal. Archives of Agronomy and Soil Science, 2019, 65, 465-477.	1.3	0
13	Phosphorus-induced zinc deficiency in wheat pot-grown on noncalcareous and calcareous soils of different properties. Archives of Agronomy and Soil Science, 2019, 65, 208-223.	1.3	21
14	Aeolian influx and related environmental conditions on Gran Canaria during the early Pleistocene. Quaternary Research, 2019, 91, 35-50.	1.0	4
15	Distribution of REE-bearing minerals in felsic magmatic rocks and paleosols from Gran Canaria, Spain: Intraplate oceanic islands as a new example of potential, non-conventional sources of rare-earth elements. Journal of Geochemical Exploration, 2019, 204, 270-288.	1.5	9
16	Aeolian influx and related environmental conditions on Gran Canaria during the early Pleistocene – ERRATUM. Quaternary Research, 2019, 91, 452-452.	1.0	2
17	Organic amendments as a source of phosphorus: agronomic and environmental impact of different animal manures applied to an acid soil. Archives of Agronomy and Soil Science, 2018, 64, 257-271.	1.3	26
18	Diagenetic reddening of Early Eocene paleosols on King George Island, Antarctica. Geoderma, 2018, 315, 149-159	2.3	8

#	Article	IF	CITATIONS
19	Monsoonal climate evolution in southern China since 1.2 Ma: New constraints from Fe-oxide records in red earth sediments from the Shengli section, Chengdu Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473, 1-15.	1.0	35
20	Chromium Adsorption in Different Mineralogical Fractions from Subtropical Soils. Pedosphere, 2017, 27, 106-111.	2.1	9
21	Phosphorus reduces the zinc concentration in cereals potâ€grown on calcareous Vertisols from southern Spain. Journal of the Science of Food and Agriculture, 2017, 97, 3427-3432.	1.7	28
22	Lateral Transfer of Organic Carbon and Phosphorus by Water Erosion at Hillslope Scale in Southern Spain Olive Orchards. Vadose Zone Journal, 2017, 16, 1-15.	1.3	12
23	Factors Controlling Magnetism of Reddish Brown Soil Profiles from Calcarenites in Southern Spain: Dust Input or In-situ Pedogenesis?. Frontiers in Earth Science, 2016, 4, .	0.8	7
24	Phosphorus adsorption and desorption in undisturbed samples from subtropical soils under conventional tillage or noâ€ŧillage. Journal of Plant Nutrition and Soil Science, 2016, 179, 198-205.	1.1	29
25	Chromium Displacement in Subtropical Soils Fertilized with Hydrolysed Leather: A Laboratory Study. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 881-887.	1.3	3
26	Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction. Quaternary Science Reviews, 2016, 150, 264-277.	1.4	51
27	Calculation of threshold Olsen P values for fertilizer response from soil properties. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	29
28	Changes in Olsen P in Relation to P Balance in Contrasting Agricultural Soils. Pedosphere, 2016, 26, 636-642.	2.1	9
29	Spatial and temporal variations in denudation rates derived from cosmogenic nuclides in four European fluvial terrace sequences. Geomorphology, 2016, 274, 180-192.	1.1	20
30	Timing of European fluvial terrace formation and incision rates constrained by cosmogenic nuclide dating. Earth and Planetary Science Letters, 2016, 451, 221-231.	1.8	33
31	Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite. Scientific Reports, 2016, 6, 30395.	1.6	18
32	Estimating the concentration of aluminumâ€substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations. Journal of Geophysical Research: Solid Earth, 2016, 121, 4180-4194.	1.4	28
33	Magnetism of Alâ€substituted magnetite reduced from Alâ€hematite. Journal of Geophysical Research: Solid Earth, 2016, 121, 4195-4210.	1.4	18
34	Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil and Tillage Research, 2016, 155, 62-68.	2.6	139
35	Diffusion and uptake of phosphorus, and root development of corn seedlings, in three contrasting subtropical soils under conventional tillage or no-tillage. Biology and Fertility of Soils, 2016, 52, 203-210.	2.3	30
36	Predicting the occurrence of iron chlorosis in grapevine with tests based on soil iron forms. Oeno One, 2016, 44, 77.	0.7	1

#	Article	IF	CITATIONS
37	Grain growth and transformation of pedogenic magnetic particles in red Ferralsols. Geophysical Research Letters, 2015, 42, 5762-5770.	1.5	25
38	Critical Olsen P and CaCl ₂ â€P levels as related to soil properties: results from micropot experiments. Soil Use and Management, 2015, 31, 233-240.	2.6	23
39	Plant growth responses to biochar amendment of Mediterranean soils deficient in iron and phosphorus. Journal of Plant Nutrition and Soil Science, 2015, 178, 567-575.	1.1	13
40	Acquisition of chemical remanent magnetization during experimental ferrihydrite–hematite conversion in Earth-like magnetic field—implications for paleomagnetic studies of red beds. Earth and Planetary Science Letters, 2015, 428, 1-10.	1.8	49
41	Mineral magnetic and diffuse reflectance spectroscopy characteristics of the Deccan volcanic bole beds: Implications to genesis and transformations of iron oxides. Geoderma, 2015, 239-240, 317-330.	2.3	23
42	Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms. Agronomy for Sustainable Development, 2015, 35, 1571-1579.	2.2	28
43	Short communication: Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe. Spanish Journal of Agricultural Research, 2015, 13, e11SC01.	0.3	6
44	Evaluation of preflooding effects on iron extractability and phytoavailability in highly calcareous soil in containers. Journal of Plant Nutrition and Soil Science, 2014, 177, 150-158.	1.1	23
45	Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems. Acta Scientiarum - Agronomy, 2014, 36, 379.	0.6	50
46	Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods. Geophysical Journal International, 2014, 196, 131-144.	1.0	22
47	The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels. Journal of the Science of Food and Agriculture, 2014, 94, 2766-2773.	1.7	10
48	Extraction with 0.01Â <scp>m</scp> CaCl ₂ underestimates the concentration of phosphorus in the soil solution. Soil Use and Management, 2014, 30, 297-302.	2.6	14
49	Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 2014, 177, 16-25.	1.1	198
50	Magnetic susceptibility and diffuse reflectance spectroscopy to characterize the spatial variability of soil properties in a Brazilian Haplustalf. Geoderma, 2014, 219-220, 63-71.	2.3	45
51	Discriminating dusts and dusts sources using magnetic properties and hematite:Goethite ratios of surface materials and dust from North Africa, the Atlantic and Barbados. Aeolian Research, 2014, 13, 91-104.	1.1	17
52	Ferro and antiferromagnetism of ultrafineâ€grained hematite. Geochemistry, Geophysics, Geosystems, 2014, 15, 2699-2712.	1.0	23
53	The Olsen P/solution P relationship as affected by soil properties. Soil Use and Management, 2014, 30, 454-462.	2.6	12
54	Phosphate aggravates iron chlorosis in sensitive plants grown on model calcium carbonateâ^'iron oxide systems. Plant and Soil, 2013, 373, 31-42.	1.8	18

#	Article	IF	CITATIONS
55	Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 2013, 33, 475-484.	2.2	251
56	Phosphorus in soils and its transfer to water: from fineâ€scale soil processes to models and solutions in landscapes and catchments. Soil Use and Management, 2013, 29, 1-5.	2.6	12
57	Phosphorus losses from two representative small catchments in the Mediterranean part of Spain. Journal of Soils and Sediments, 2013, 13, 1369-1377.	1.5	5
58	Iron chlorosis in field grown olive as affected by phosphorus fertilization. European Journal of Agronomy, 2013, 51, 101-107.	1.9	7
59	Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China. Global and Planetary Change, 2013, 110, 368-378.	1.6	69
60	Micronutrient Constraints to Crop Production in the Middle East–West Asia Region. Advances in Agronomy, 2013, , 1-84.	2.4	50
61	Lowering iron chlorosis of olive by soil application of iron sulfate or siderite. Agronomy for Sustainable Development, 2013, 34, 677.	2.2	1
62	Pressure demagnetization of synthetic Al substituted hematite and its implications for planetary studies. Physics of the Earth and Planetary Interiors, 2013, 224, 1-10.	0.7	7
63	Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth and Planetary Science Letters, 2013, 369-370, 271-283.	1.8	95
64	Phosphorus sorption and desorption properties of soils developed on basic rocks under a subhumid Mediterranean climate. Soil Use and Management, 2013, 29, 15-23.	2.6	9
65	Iron oxides dynamics in a subtropical Brazilian Paleudult under long-term no-tillage management. Scientia Agricola, 2013, 70, 48-54.	0.6	37
66	Critical evaluation of the revised akdalaite model for ferrihydriteDiscussion. American Mineralogist, 2012, 97, 253-254.	0.9	15
67	Magnetic discrimination between Alâ€substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance. Journal of Geophysical Research, 2012, 117, .	3.3	37
68	Application of synthetic siderite (FeCO3) to the soil is capable of alleviating iron chlorosis in olive trees. Scientia Horticulturae, 2012, 138, 17-23.	1.7	20
69	New constraints on climate forcing and variability in the circum-Mediterranean region from magnetic and geochemical observations of sapropels S1, S5 and S6. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334, 1-12.	1.0	8
70	Significance of Phosphorus for Agriculture and the Environment in the West Asia and North Africa Region. Advances in Agronomy, 2012, , 91-153.	2.4	37
71	Pot evaluation of synthetic nanosiderite for the prevention of iron chlorosis. Journal of the Science of Food and Agriculture, 2012, 92, 1964-1973.	1.7	16
72	Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology. Clay Minerals, 2011, 46, 137-147.	0.2	46

#	Article	IF	CITATIONS
73	Aplicação da espectroscopia de reflectância difusa na quantificação dos constituintes de bauxita e de minério de ferro. Revista Escola De Minas, 2011, 64, 199-204.	0.1	3
74	Soil properties affect the availability, movement, and virulence of entomopathogenic fungi conidia against puparia of Ceratitis capitata (Diptera: Tephritidae). Biological Control, 2011, 58, 277-285.	1.4	59
75	Iron(III) Reduction in Anaerobically Incubated Suspensions of Highly Calcareous Agricultural Soils. Soil Science Society of America Journal, 2011, 75, 2136-2146.	1.2	20
76	Limitations of the Olsen method to assess plant-available phosphorus in reclaimed marsh soils. Soil Use and Management, 2010, 26, 133-140.	2.6	22
77	Correlation of properties of Brazilian Haplustalfs with magnetic susceptibility measurements. Soil Use and Management, 2010, 26, 425-431.	2.6	49
78	Magnetic susceptibility changes in relation to pedogenesis in a Xeralf chronosequence in northwestern Spain. European Journal of Soil Science, 2010, 61, 161-173.	1.8	76
79	Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications. Geophysical Journal International, 2010, 183, 695-705.	1.0	25
80	Aluminum hydroxy-interlayered minerals and chemical properties of a subtropical Brazilian Oxisol under no-tillage and conventional tillage. Revista Brasileira De Ciencia Do Solo, 2010, 34, 33-41.	0.5	25
81	Relationship between Olsen P and Ammonium Lactate–Extractable P in Portuguese Acid Soils. Communications in Soil Science and Plant Analysis, 2010, 41, 2358-2370.	0.6	21
82	Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma, 2010, 154, 465-472.	2.3	64
83	Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 2010, 158, 78-84.	2.3	102
84	Contribution of Saharan dust to Mediterranean soils assessed by sequential extraction and Pb and Sr isotopes. Chemical Geology, 2010, 275, 19-25.	1.4	36
85	Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: Indications for pedogenesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293, 144-156.	1.0	43
86	The magnetism of micro-sized hematite explained. Physics of the Earth and Planetary Interiors, 2010, 183, 387-397.	0.7	35
87	Testing the ability of vivianite to prevent iron deficiency in pot-grown grapevine. Scientia Horticulturae, 2010, 123, 464-468.	1.7	27
88	Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2787-2792.	3.3	312
89	The use of diffuse reflectance spectroscopy for the characterization of iron ores. Minerals Engineering, 2009, 22, 1245-1250.	1.8	18
90	Iron deficiency symptoms in grapevine as affected by the iron oxide and carbonate contents of model substrates. Plant and Soil, 2009, 322, 293-302.	1.8	11

#	Article	IF	CITATIONS
91	The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy. Journal of Geophysical Research, 2009, 114, .	3.3	48
92	Magnetic Enhancement During the Crystallization of Ferrihydrite at 25 and 50°C. Clays and Clay Minerals, 2009, 57, 46-53.	0.6	31
93	Bioleaching of a pyritic sludge from the Aznalcóllar (Spain) mine spillage at ambient and elevated temperatures. Hydrometallurgy, 2008, 93, 76-79.	1.8	13
94	Magnetism of intermediate hydromaghemite in the transformation of 2â€line ferrihydrite into hematite and its paleoenvironmental implications. Journal of Geophysical Research, 2008, 113, .	3.3	54
95	Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biology and Biochemistry, 2008, 40, 1971-1974.	4.2	109
96	Water dispersible clay in calcareous soils of southwestern Spain. Catena, 2008, 74, 22-30.	2.2	33
97	Propriedades cristalográficas de caulinitas de solos do ambiente tabuleiros costeiros, Amazônia e Recôncavo Baiano. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1857-1872.	0.5	19
98	Predicting the Incidence of Iron Deficiency Chlorosis from Hydroxylamineâ€Extractable Iron in Soil. Soil Science Society of America Journal, 2008, 72, 1493-1499.	1.2	10
99	Caracterização de óxidos de ferro de solos do ambiente tabuleiros costeiros. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1017-1031.	0.5	22
100	Caracterização fÃsica, quÃmica, mineralógica e micromorfológica de horizontes coesos e fragipãs de solos vermelhos e amarelos do ambiente Tabuleiros Costeiros. Revista Brasileira De Ciencia Do Solo, 2008, 32, 297-313.	0.5	32
101	Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess–Paleosol Sequence, Chinese Loess Plateau. Soil Science Society of America Journal, 2007, 71, 1570-1578.	1.2	182
102	PHOSPHORUS DESORPTION KINETICS IN RELATION TO PHOSPHORUS FORMS AND SORPTION PROPERTIES OF PORTUGUESE ACID SOILS. Soil Science, 2007, 172, 631-638.	0.9	48
103	Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews, 2007, 26, 368-385.	1.4	238
104	What do the HIRM and <i>S</i> â€ f atio really measure in environmental magnetism?. Geochemistry, Geophysics, Geosystems, 2007, 8, .	1.0	173
105	Agriculture as a source of phosphorus for eutrophication in southern Europe. Soil Use and Management, 2007, 23, 25-35.	2.6	86
106	The Olsen P method as an agronomic and environmental test for predicting phosphate release from acid soils. Nutrient Cycling in Agroecosystems, 2007, 77, 283-292.	1.1	91
107	Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophysical Research Letters, 2006, 33, .	1.5	217
108	Contrasting behavior of hematite and goethite within paleosol S5 of the Luochuan profile, Chinese Loess Plateau. Geophysical Research Letters, 2006, 33, .	1.5	26

#	Article	IF	CITATIONS
109	Characteristic low-temperature magnetic properties of aluminous goethite [α-(Fe, Al)OOH] explained. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	52
110	Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	155
111	Transformation of jarosite to hematite in simulated Martian brines. Earth and Planetary Science Letters, 2006, 251, 380-385.	1.8	36
112	Experimental Oxidative Dissolution of Sphalerite in the Aznalcóllar Sludge and Other Pyritic Matrices. Journal of Environmental Quality, 2006, 35, 1032-1039.	1.0	11
113	Long-term effect of tillage on phosphorus forms and sorption in a Vertisol of southern Spain. European Journal of Agronomy, 2006, 25, 264-269.	1.9	27
114	Soil Properties Influencing Iron Chlorosis in Grapevines Grown in the Montillaâ€Moriles Area, Southern Spain. Communications in Soil Science and Plant Analysis, 2006, 37, 1723-1729.	0.6	18
115	Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 2005, 161, 102-112.	1.0	270
116	Zinc phytoavailability after remediation in soils contaminated by sphalerite-containing pyritic sludge. Plant and Soil, 2005, 271, 341-350.	1.8	6
117	Temporary flooding increases iron phytoavailability in calcareous Vertisols and Inceptisols. Plant and Soil, 2005, 266, 195-203.	1.8	14
118	Weathering of Pyrite and Sphalerite in Soils Contaminated with Pyritic Sludge. Soil Science Society of America Journal, 2005, 69, 1314-1319.	1.2	10
119	Non-saturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	71
120	Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research, 2005, 110, .	3.3	133
121	Mechanism of the parasitic remanence of aluminous goethite [α-(Fe, Al)OOH]. Journal of Geophysical Research, 2004, 109, .	3.3	24
122	Dissolved reactive phosphorus in a Calcaric Fluvisol as affected by the addition of agricultural wastes. Soil Use and Management, 2004, 20, 74-80.	2.6	8
123	Zinc phytotoxicity to oilseed rape grown on zinc-loaded substrates consisting of Fe oxide-coated and calcite sand. Plant and Soil, 2003, 257, 227-236.	1.8	25
124	Can the presence of structural phosphorus help to discriminate between abiogenic and biogenic magnetites?. Journal of Biological Inorganic Chemistry, 2003, 8, 810-814.	1.1	7
125	The visible diffuse reflectance spectrum in relation to the color and crystal properties of hematite. Clays and Clay Minerals, 2003, 51, 309-317.	0.6	72
126	Prevention of Ironâ€Deficiency Induced Chlorosis in Kiwifruit (Actinidia deliciosa) Through Soil Application of Synthetic Vivianite in a Calcareous Soil. Journal of Plant Nutrition, 2003, 26, 2031-2041.	0.9	31

#	Article	IF	CITATIONS
127	Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite. American Mineralogist, 2003, 88, 1679-1688.	0.9	107
128	Iron (Hydr)Oxide Crystallinity Effects on Soil Aggregation. Soil Science Society of America Journal, 2003, 67, 606-611.	1.2	218
129	Iron (Hydr)Oxide Crystallinity Effects on Soil Aggregation. Soil Science Society of America Journal, 2003, 67, 606.	1.2	47
130	Experimental alteration of vivianite to lepidocrocite in a calcareous medium. Clay Minerals, 2002, 37, 709-718.	0.2	37
131	Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochimica Et Cosmochimica Acta, 2002, 66, 2801-2806.	1.6	167
132	Iron chlorosis in olive in relation to soil properties. Nutrient Cycling in Agroecosystems, 2002, 62, 47-52.	1.1	45
133	Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant and Soil, 2002, 241, 139-144.	1.8	38
134	Using Phosphorus Concentration in the Soil Solution to Predict Phosphorus Desorption to Water. Journal of Environmental Quality, 2001, 30, 1829-1835.	1.0	52
135	COMPARISON OF SOIL EXTRACTION PROCEDURES FOR ESTIMATING PHOSPHORUS RELEASE POTENTIAL OF AGRICULTURAL SOILS. Communications in Soil Science and Plant Analysis, 2001, 32, 87-105.	0.6	23
136	Key Role of Phosphorus in the Formation of the Iron Oxides in Mars Soils?. Icarus, 2000, 145, 645-647.	1.1	11
137	Effect of Phosphate on the Formation of Nanophase Lepidocrocite from Fe(II) Sulfate. Clays and Clay Minerals, 2000, 48, 503-510.	0.6	50
138	Phosphorus Forms and Desorption Patterns in Heavily Fertilized Calcareous and Limed Acid Soils. Soil Science Society of America Journal, 2000, 64, 2031-2037.	1.2	102
139	PHOSPHORUS DYNAMICS AND UPTAKE BY WHEAT IN A MODEL CALCITE-FERRIHYDRITE SYSTEM. Soil Science, 2000, 165, 803-812.	0.9	31
140	Preparation and Properties of Hematite with Structural Phosphorus. Clays and Clay Minerals, 1999, 47, 375-385.	0.6	43
141	Effect of Phosphate on the Crystallization of Hematite, Goethite, and Lepidocrocite from Ferrihydrite. Clays and Clay Minerals, 1999, 47, 304-311.	0.6	118
142	Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science, 1999, 50, 391-399.	1.8	83
143	The release of phosphorus from heavily fertilized soils to dilute electrolytes: effect of soil properties. Agronomy for Sustainable Development, 1999, 19, 395-404.	0.8	15
144	Phosphate sorption by calcareous Vertisols and Inceptisols as evaluated from extended P-sorption curves. European Journal of Soil Science, 1998, 49, 661-667.	1.8	67

#	Article	IF	CITATIONS
145	Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils. Clays and Clay Minerals, 1998, 46, 528-536.	0.6	343
146	PHOSPHORUS AND IRON MOBILIZATION IN FLOODED SOILS FROM BRAZIL. Soil Science, 1998, 163, 122-132.	0.9	34
147	Epitaxial overgrowth of goethite on hematite synthesized in phosphate media; a scanning force and transmission electron microscopy study. American Mineralogist, 1997, 82, 1091-1100.	0.9	48
148	Phosphate-rich soils in the European Union: estimating total plant-available phosphorus. European Journal of Agronomy, 1997, 6, 205-214.	1.9	61
149	Surface Hydroxyl Configuration of Various Crystal Faces of Hematite and Goethite. Journal of Colloid and Interface Science, 1996, 177, 407-410.	5.0	242
150	ORGANIC MATTER DELAYS BUT DOES NOT PREVENT PHOSPHATE SORPTION BY CERRADO SOILS FROM BRAZIL. Soil Science, 1995, 159, 207-211.	0.9	96
151	Phosphate availability in calcareous Vertisols and Inceptisols in relation to fertilizer type and soil properties. Fertilizer Research, 1995, 40, 109-119.	0.5	37
152	Phytoavailability of phosphate adsorbed on ferrihydrite, hematite, and goethite. Plant and Soil, 1994, 159, 219-225.	1.8	63
153	Phosphate sorption by natural hematites. European Journal of Soil Science, 1994, 45, 45-51.	1.8	55
154	Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochimica Et Cosmochimica Acta, 1994, 58, 1261-1269.	1.6	94
155	Crystallochemical properties of NH4(Fe1-xMnx)PO4.cntdot.H2O. Journal of Agricultural and Food Chemistry, 1994, 42, 105-107.	2.4	8
156	Phosphate sorption as related to mineralogy of a hydrosequence of soils from the Cerrado region (Brazil). Geoderma, 1993, 58, 107-123.	2.3	82
157	Phosphate availability in soils at water activities below one. Communications in Soil Science and Plant Analysis, 1993, 24, 2085-2092.	0.6	4
158	The reactivity of carbonates in selected soils of southern Spain. Geoderma, 1992, 52, 149-160.	2.3	28
159	Fast and Slow Phosphate Sorption by Goethite-Rich Natural Materials. Clays and Clay Minerals, 1992, 40, 14-21.	0.6	149
160	Use of vivianite (Fe3(PO4)2.8H2O) to prevent iron chlorosis in calcareous soils. Fertilizer Research, 1992, 31, 61-67.	0.5	39
161	Activation energy of the slow reaction between phosphate and goethites of different morphology. Soil Research, 1991, 29, 69.	0.6	19
162	Relationships between aggregation and iron oxides in Terra Rossa soils from southern Italy. Catena, 1991, 18, 51-59.	2.2	53

#	Article	IF	CITATIONS
163	The Contrasting Effect of Goethite and Hematite on Phosphate Sorption and Desorption by Terre Rosse. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1991, 154, 301-305.	0.4	7
164	Predicting phosphate sorption in soils of mediterranean regions. Fertilizer Research, 1990, 23, 173-179.	0.5	39
165	Mineralogy of iron oxides in two soil chronosequences of Central Spain. Catena, 1989, 16, 291-299.	2.2	20
166	Lithium ferrite formation by precipitation from Fe(III) solutions. Journal of Solid State Chemistry, 1988, 77, 132-140.	1.4	24
167	Phosphate sorption by calcium carbonate in some soils of the Mediterranean part of Spain. Geoderma, 1988, 42, 261-269.	2.3	49
168	Origin of red-yellow mottling in a Ferric Acrisol of southern Spain. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1987, 150, 308-313.	0.4	18
169	The reductive dissolution of synthetic goethite and hematite in dithionite. Clay Minerals, 1987, 22, 329-337.	0.2	119
170	Sources of iron oxides in reddish brown soil profiles from calcarenites in Southern Spain. Geoderma, 1986, 37, 57-66.	2.3	83
171	Comments on "Loessâ€derived Soils, Mississippi Valley Region: I. Soil Sedimentation System.â€. Soil Science Society of America Journal, 1985, 49, 1593-1594.	1.2	0
172	Relation of Infrared, Crystallochemical, and Morphological Properties of Al-Substituted Hematites. Clays and Clay Minerals, 1984, 32, 475-479.	0.6	39
173	Influence of Aluminum Substitution on the Color of Synthetic Hematites. Clays and Clay Minerals, 1984, 32, 157-158.	0.6	39
174	Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain. Geoderma, 1984, 33, 283-296.	2.3	73
175	QUANTITATIVE RELATIONSHIPS BETWEEN SOIL COLOR AND HEMATITE CONTENT. Soil Science, 1983, 136, 354-358.	0.9	332
176	Influence of Relative Humidity on the Crystallization of Fe(III) Oxides From Ferrihydrite. Clays and Clay Minerals, 1982, 30, 337-340.	0.6	62
177	Crystallization of Fe(III)-Oxides from ferrihydrite in salt solutions: osmotic and specific ion effects. Clay Minerals, 1982, 17, 463-469.	0.2	31
178	lron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 1980, 23, 191-208.	2.3	315
179	Feedback processes in soil genesis. Geoderma, 1978, 20, 281-287.	2.3	36
180	Origin of gibbsite in a weathering profile from granite in west-central Spain. Geoderma, 1977, 19, 37-49.	2.3	11

#	Article	IF	CITATIONS
181	Soil development in a sequence of river terraces in northern spain. Catena, 1976, 3, 137-151.	2.2	34
182	Determination of gallium in an iron-aluminium matrix by solvent extraction and flame emission spectroscopy. Talanta, 1972, 19, 1478-1480.	2.9	8
183	Diffuse Reflectance Spectroscopy. Soil Science Society of America Book Series, 0, , 367-385.	0.3	33
184	A new model for transformation of ferrihydrite to hematite in soils and sediments. Geology, 0, , .	2.0	27
185	Iron, manganese and aluminium oxides and oxyhydroxides. , 0, , 297-336.		21