Miriam L Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304553/publications.pdf

Version: 2024-02-01

66336 64791 6,630 107 42 79 citations h-index g-index papers 111 111 111 4968 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cardiolipin function in the yeast <i>S. cerevisiae</i> and the lessons learned for Barth syndrome. Journal of Inherited Metabolic Disease, 2022, 45, 60-71.	3.6	8
2	NAD supplementation improves mitochondrial performance of cardiolipin mutants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159094.	2.4	6
3	Inositol depletion regulates phospholipid metabolism and activates stress signaling in HEK293T cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159137.	2.4	7
4	The paradoxical role of inositol in cancer: a consequence of the metabolic state of a tumor. Cancer and Metastasis Reviews, 2022, 41, 249-254.	5.9	5
5	Current Knowledge on the Role of Cardiolipin Remodeling in the Context of Lipid Oxidation and Barth Syndrome. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	2
6	The Role of the UPR Pathway in the Pathophysiology and Treatment of Bipolar Disorder. Frontiers in Cellular Neuroscience, 2021, 15, 735622.	3.7	5
7	Valproate activates the Snf1 kinase in Saccharomyces cerevisiae by decreasing the cytosolic pH. Journal of Biological Chemistry, 2021, 297, 101110.	3.4	7
8	A myo-inositol bioassay utilizing an auxotrophic strain of S. cerevisiae. Journal of Microbiological Methods, 2021, 189, 106300.	1.6	3
9	Lipids Biosynthesis, Remodeling, and Turnover of Cardiolipin. , 2021, , 684-694.		1
10	Studying Lipid-Related Pathophysiology Using the Yeast Model. Frontiers in Physiology, 2021, 12, 768411.	2.8	3
11	Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158542.	2.4	4
12	Cardiolipin-deficient cells have decreased levels of the iron–sulfur biogenesis protein frataxin. Journal of Biological Chemistry, 2020, 295, 11928-11937.	3.4	19
13	Valproate inhibits mitochondrial bioenergetics and increases glycolysis in Saccharomyces cerevisiae. Scientific Reports, 2020, 10, 11785.	3.3	14
14	Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function. Journal of Biological Chemistry, 2019, 294, 11568-11578.	3.4	31
15	Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11235-11240.	7.1	60
16	Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 654-661.	2.4	14
17	Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: A myoblast model of Barth syndrome and cardiolipin deficiency. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 857-865.	2.4	32
18	Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handbook of Experimental Pharmacology, 2018, 259, 221-260.	1.8	12

#	Article	IF	Citations
19	Valproate inhibits glucose-stimulated insulin secretion in beta cells. Histochemistry and Cell Biology, 2018, 150, 395-401.	1.7	4
20	Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1354-1368.	2.4	16
21	Valproate Prevents a Cytosolic vH + ATPase Subunit Insertion on Insulin Granule Membrane and Compromises Insulin Release in Min6 Cells. FASEB Journal, 2018, 32, lb191.	0.5	o
22	Inositol Depletion Induced by Acute Treatment of the Bipolar Disorder Drug Valproate Increases Levels of Phytosphingosine. Journal of Biological Chemistry, 2017, 292, 4953-4959.	3.4	5
23	Cardiolipin Regulates Mitophagy through the Protein Kinase C Pathway. Journal of Biological Chemistry, 2017, 292, 2916-2923.	3.4	64
24	Lipidomics Characterization of Biosynthetic and Remodeling Pathways of Cardiolipins in Genetically and Nutritionally Manipulated Yeast Cells. ACS Chemical Biology, 2017, 12, 265-281.	3.4	25
25	Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis. Journal of Biological Chemistry, 2017, 292, 1092-1102.	3.4	29
26	Orchestrating phospholipid biosynthesis: Phosphatidic acid conducts and Opi1p performs. Journal of Biological Chemistry, 2017, 292, 18729-18730.	3.4	7
27	Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 3-7.	2.4	150
28	Barth syndrome: A life-threatening disorder caused by abnormal cardiolipin remodeling. Journal of Rare Diseases Research & Treatment, 2017, 2, 58-62.	1.1	9
29	MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PLoS ONE, 2017, 12, e0182534.	2.5	17
30	Get1p and Get2p are required for maintenance of mitochondrial morphology and normal cardiolipin levels. FEMS Yeast Research, 2016, 16, fow019.	2.3	5
31	Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurology, 2016, 11, 135-148.	0.5	35
32	Inositol Hexakisphosphate Kinase 1 (IP6K1) Regulates Inositol Synthesis in Mammalian Cells*. Journal of Biological Chemistry, 2016, 291, 10437-10444.	3.4	28
33	Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels. Journal of Biological Chemistry, 2016, 291, 22253-22261.	3.4	20
34	Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. Journal of Bioenergetics and Biomembranes, 2016, 48, 113-123.	2.3	77
35	The Role of Cardiolipin in Cardiovascular Health. BioMed Research International, 2015, 2015, 1-12.	1.9	67
36	Perturbation of the Vacuolar ATPase. Journal of Biological Chemistry, 2015, 290, 27460-27472.	3.4	17

#	Article	IF	CITATIONS
37	Inositol synthesis regulates the activation of $\langle scp \rangle GSK \langle scp \rangle \hat{a} \in \hat{s} \hat{l} \pm in neuronal cells. Journal of Neurochemistry, 2015, 133, 273-283.$	3.9	17
38	Deletion of the Cardiolipin-specific Phospholipase Cld1 Rescues Growth and Life Span Defects in the Tafazzin Mutant. Journal of Biological Chemistry, 2014, 289, 3114-3125.	3.4	55
39	Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. Clinical Lipidology, 2014, 9, 533-551.	0.4	1
40	The functions of cardiolipin in cellular metabolism–potential modifiers of the Barth syndrome phenotype. Chemistry and Physics of Lipids, 2014, 179, 49-56.	3.2	38
41	VPA inhibits myoâ€inositol phosphate synthase activity by inhibition of Gsk3 (LB150). FASEB Journal, 2014, 28, LB150.	0.5	0
42	Phosphorylation regulates myoâ€inositol 3â€phosphate synthase: A novel regulatory mechanism of inositol biosynthesis (LB190). FASEB Journal, 2014, 28, LB190.	0.5	0
43	Loss of Cardiolipin Leads to Perturbation of Mitochondrial and Cellular Iron Homeostasis. Journal of Biological Chemistry, 2013, 288, 1696-1705.	3.4	68
44	Regulation of Inositol Metabolism Is Fine-tuned by Inositol Pyrophosphates in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2013, 288, 24898-24908.	3.4	42
45	Phosphorylation Regulates myo-Inositol-3-phosphate Synthase. Journal of Biological Chemistry, 2013, 288, 26822-26833.	3.4	37
46	The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in <i>Dictyostelium</i> . DMM Disease Models and Mechanisms, 2012, 5, 115-124.	2.4	68
47	Probing myo-inositol 1-phosphate synthase with multisubstrate adducts. Organic and Biomolecular Chemistry, 2012, 10, 9601.	2.8	5
48	Cardiolipin and Mitochondrial Phosphatidylethanolamine Have Overlapping Functions in Mitochondrial Fusion in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2012, 287, 17589-17597.	3.4	165
49	Lipidomics of intact mitochondria by MALDI-TOF/MS. Journal of Lipid Research, 2012, 53, 1417-1425.	4.2	62
50	Loss of Mitochondrial DNA in the Yeast Cardiolipin Synthase crd1 Mutant Leads to Up-regulation of the Protein Kinase Swe1p That Regulates the G2/M Transition. Journal of Biological Chemistry, 2010, 285, 10397-10407.	3.4	35
51	Loss of Cardiolipin Leads to Longevity Defects That Are Alleviated by Alterations in Stress Response Signaling. Journal of Biological Chemistry, 2009, 284, 18106-18114.	3.4	25
52	Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand. Journal of Cell Biology, 2009, 184, 469-472.	5.2	86
53	Mitochondrial Cardiolipin Involved in Outer-Membrane Protein Biogenesis: Implications for Barth Syndrome. Current Biology, 2009, 19, 2133-2139.	3.9	204
54	Cellular functions of cardiolipin in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 212-218.	4.1	126

#	Article	IF	CITATIONS
55	Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects — A potential mood-stabilizing drug. Life Sciences, 2009, 84, 38-44.	4.3	5
56	Yeast bioassay for identification of inositol depleting compounds. World Journal of Biological Psychiatry, 2009, 10, 893-899.	2.6	3
57	Cellular consequences of inositol depletion. Biochemical Society Transactions, 2009, 37, 1099-1103.	3.4	47
58	Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth. Molecular Microbiology, 2008, 68, 1061-1072.	2.5	80
59	Cardiolipin Mediates Cross-Talk between Mitochondria and the Vacuole. Molecular Biology of the Cell, 2008, 19, 5047-5058.	2.1	65
60	Inositol depletion: a good or bad outcome of valproate treatment?. Future Neurology, 2008, 3, 275-286.	0.5	5
61	Up-regulation of the Cell Integrity Pathway in Saccharomyces cerevisiae Suppresses Temperature Sensitivity of the pgs1î" Mutant. Journal of Biological Chemistry, 2007, 282, 15946-15953.	3.4	40
62	Anticonvulsant efficacy of valproate-like carboxylic acids: a potential target for anti-bipolar therapy. Bipolar Disorders, 2007, 9, 197-205.	1.9	1
63	Glycogen synthase kinaseâ€3 is required for optimal de novo synthesis of inositol. Molecular Microbiology, 2007, 63, 1248-1258.	2.5	28
64	Inositol Phosphates and Phosphoinositides in Health and Disease., 2006, 39, 265-292.		42
65	Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Analytical Biochemistry, 2005, 338, 162-164.	2.4	87
66	Binding of 10-N-nonyl acridine orange to cardiolipin-deficient yeast cells: Implications for assay of cardiolipin. Analytical Biochemistry, 2005, 343, 350-352.	2.4	39
67	Molecular symmetry in mitochondrial cardiolipins. Chemistry and Physics of Lipids, 2005, 138, 38-49.	3.2	255
68	Genetic Perturbation of Glycolysis Results in Inhibition of de Novo Inositol Biosynthesis. Journal of Biological Chemistry, 2005, 280, 41805-41810.	3.4	31
69	Synthetic Lethal Interaction of the Mitochondrial Phosphatidylethanolamine and Cardiolipin Biosynthetic Pathways in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 35410-35416.	3.4	132
70	Loss of Function of KRE5 Suppresses Temperature Sensitivity of Mutants Lacking Mitochondrial Anionic Lipids. Molecular Biology of the Cell, 2005, 16, 665-675.	2.1	59
71	The Human TAZ Gene Complements Mitochondrial Dysfunction in the Yeast taz1î" Mutant. Journal of Biological Chemistry, 2004, 279, 44394-44399.	3.4	96
72	Cardiolipin Biosynthesis and Mitochondrial Respiratory Chain Function Are Interdependent. Journal of Biological Chemistry, 2004, 279, 42612-42618.	3.4	124

#	Article	IF	CITATIONS
73	Absence of Cardiolipin Results in Temperature Sensitivity, Respiratory Defects, and Mitochondrial DNA Instability Independent of pet56. Journal of Biological Chemistry, 2004, 279, 32294-32300.	3.4	89
74	Human 1-D-myo-Inositol-3-phosphate Synthase Is Functional in Yeast. Journal of Biological Chemistry, 2004, 279, 21759-21765.	3.4	61
75	Post-translational regulation of phosphatidylglycerolphosphate synthase in response to inositol. Molecular Microbiology, 2004, 53, 1243-1249.	2.5	35
76	1D-myo-inositol 3-phosphate synthase: conservation, regulation, and putative target of mood stabilizers. Clinical Neuroscience Research, 2004, 4, 181-187.	0.8	17
77	Valproate decreases inositol biosynthesis. Biological Psychiatry, 2004, 56, 868-874.	1.3	106
78	Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. Molecular Microbiology, 2003, 49, 1595-1604.	2.5	42
79	Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Molecular Microbiology, 2003, 51, 149-158.	2.5	186
80	Lithium and valproate decrease the membrane phosphatidylinositol/phosphatidylcholine ratio. Molecular Microbiology, 2003, 47, 373-381.	2.5	20
81	The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Molecular Brain Research, 2003, 115, 104-110.	2.3	33
82	Cardiolipin Stabilizes Respiratory Chain Supercomplexes. Journal of Biological Chemistry, 2003, 278, 52873-52880.	3.4	701
83	Regulation of Phosphatidylglycerophosphate Synthase by Inositol in Saccharomyces cerevisiae Is Not at the Level of PGS1 mRNA Abundance. Journal of Biological Chemistry, 2003, 278, 33978-33984.	3.4	31
84	Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochemical Journal, 2002, 364, 317-322.	3.7	126
85	<i>Myo</i> â€inositolâ€1â€phosphate (MIP) synthase: a possible new target for antibipolar drugs. Bipolar Disorders, 2002, 4, 15-20.	1.9	39
86	Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Molecular Microbiology, 2002, 36, 651-661.	2.5	65
87	Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Molecular Microbiology, 2002, 43, 267-267.	2.5	0
88	Lithium and Valproate Decrease Inositol Mass and Increase Expression of the Yeast INO1 and INO2Genes for Inositol Biosynthesis. Journal of Biological Chemistry, 2001, 276, 15466-15471.	3.4	108
89	Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochemical Journal, 2000, 347, 687-691.	3.7	111
90	Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochemical Journal, 2000, 347, 687.	3.7	46

#	Article	IF	Citations
91	Absence of Cardiolipin in the crd1 Null Mutant Results in Decreased Mitochondrial Membrane Potential and Reduced Mitochondrial Function. Journal of Biological Chemistry, 2000, 275, 22387-22394.	3.4	350
92	The biosynthesis and functional role of cardiolipin. Progress in Lipid Research, 2000, 39, 257-288.	11.6	707
93	Cardiolipin synthase expression is essential for growth at elevated temperature and is regulated by factors affecting mitochondrial development. Molecular Microbiology, 1999, 31, 373-379.	2.5	58
94	Enzymatic Synthesis of [3H]Cytidine 5′-Diphospho-1,2-diacyl-sn-glycerol. Analytical Biochemistry, 1998, 258, 48-52.	2.4	6
95	Cardiolipin Synthase Is Associated with a Large Complex in Yeast Mitochondria. Journal of Biological Chemistry, 1998, 273, 2402-2408.	3.4	27
96	Purification and Characterization of Phosphatidylglycerolphosphate Synthase from Schizosaccharomyces pombe. Journal of Biological Chemistry, 1998, 273, 4681-4688.	3.4	12
97	Cardiolipin synthase from yeast. Lipids and Lipid Metabolism, 1997, 1348, 201-206.	2.6	30
98	Regulation of inositol monophosphatase in Saccharomyces cerevisiae. Molecular Microbiology, 1997, 25, 541-546.	2. 5	28
99	Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or nonâ€fermentable carbon sources. Molecular Microbiology, 1997, 26, 481-491.	2.5	175
100	Kinetic analysis of cardiolipin synthase: A membrane enzyme with two glycerophospholipid substrates. Lipids, 1995, 30, 633-640.	1.7	15
101	Expression in yeast of an Escherichia coli gene encoding a phospholipid biosynthetic enzyme. Gene, 1994, 147, 111-114.	2.2	1
102	Anomalously slow mobility of fluorescent lipid probes in the plasma membrane of the yeastSaccharomyces cerevisiae. Journal of Membrane Biology, 1993, 131, 115-127.	2.1	56
103	Characterization and regulation of phosphatidylglycerolphosphate phosphatase in Saccharomyces cerevisiae. Lipids and Lipid Metabolism, 1990, 1046, 144-150.	2.6	43
104	Biochemical characterization and regulation of cardiolipin synthase in Saccharomyces cerevisiae. Lipids and Lipid Metabolism, 1990, 1046, 214-222.	2.6	64
105	A new negative control gene for amino acid biosynthesis in Saccharomyces cerevisiae. Current Genetics, 1986, 10, 495-501.	1.7	10
106	Characterization of a yeast regulatory mutant constitutive for synthesis of inositol-1-phosphate synthase. Molecular Genetics and Genomics, 1982, 186, 157-163.	2.4	91
107	REGULATORY MUTATIONS OF INOSITOL BIOSYNTHESIS IN YEAST: ISOLATION OF INOSITOL-EXCRETING MUTANTS. Genetics, 1982, 100, 19-33.	2.9	155