
Matthias Christen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcriptional landscape of a rewritten bacterial genome reveals control elements and genome design principles. Nature Communications, 2021, 12, 3053.	12.8	3
2	Import of Aspartate and Malate by DcuABC Drives H2/Fumarate Respiration to Promote Initial Salmonella Gut-Lumen Colonization in Mice. Cell Host and Microbe, 2020, 27, 922-936.e6.	11.0	58
3	The type IV pilin PilA couples surface attachment and cell-cycle initiation in <i>Caulobacter crescentus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9546-9553.	7.1	44
4	Co atabolism of arginine and succinate drives symbiotic nitrogen fixation. Molecular Systems Biology, 2020, 16, e9419.	7.2	33
5	YestroSens, a field-portable S. cerevisiae biosensor device for the detection of endocrine-disrupting chemicals: Reliability and stability. Biosensors and Bioelectronics, 2019, 146, 111710.	10.1	12
6	Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8070-8079.	7.1	69
7	Identification of Smallâ€Molecule Modulators of Diguanylate Cyclase by FRETâ€Based Highâ€Throughput Screening. ChemBioChem, 2019, 20, 394-407.	2.6	14
8	Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth <i>In Vitro</i> and Inside Macrophages. Infection and Immunity, 2018, 86, .	2.2	47
9	Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen. Cell Systems, 2017, 4, 611-621.e6.	6.2	47
10	Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy. Current Biology, 2017, 27, 2579-2588.e6.	3.9	34
11	Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications. PLoS ONE, 2017, 12, e0177234.	2.5	2
12	Quantitative Selection Analysis of Bacteriophage φCbK Susceptibility in Caulobacter crescentus. Journal of Molecular Biology, 2016, 428, 419-430.	4.2	49
13	Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for <i>de Novo</i> DNA Synthesis. ACS Synthetic Biology, 2015, 4, 927-934.	3.8	16
14	Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nature Communications, 2014, 5, 5392.	12.8	108
15	Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 141-146.	7.1	107
16	c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. ELife, 2013, 2, e01402.	6.0	103
17	The response threshold of <i><scp>S</scp>almonella</i> <scp><scp>PilZ</scp></scp> domain proteins is determined by their binding affinities for câ€diâ€ <scp>GMP</scp> . Molecular Microbiology, 2012, 86, 1424-1440.	2.5	84
18	Asymmetrical Distribution of the Second Messenger c-di-GMP upon Bacterial Cell Division. Science, 2010, 328, 1295-1297	12.6	245

#	Article	IF	CITATIONS
19	Activation of a Bacterial Virulence Protein by the GTPase RhoA. Science Signaling, 2009, 2, ra71.	3.6	50
20	DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4112-4117.	7.1	185
21	Allosteric Control of Cyclic di-GMP Signaling. Journal of Biological Chemistry, 2006, 281, 32015-32024.	3.4	260