Shintaro Iwasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 2008, 49, 493-500.	1.5	464
2	Hsc70/Hsp90 Chaperone Machinery Mediates ATP-Dependent RISC Loading of Small RNA Duplexes. Molecular Cell, 2010, 39, 292-299.	4.5	404
3	ATP-dependent human RISC assembly pathways. Nature Structural and Molecular Biology, 2010, 17, 17-23.	3.6	304
4	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymerase II–associated methyltransferase. Science, 2019, 363, .	6.0	262
5	Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nature Communications, 2017, 8, 159.	5.8	249
6	Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature, 2016, 534, 558-561.	13.7	235
7	The microRNA pathway and cancer. Cancer Science, 2010, 101, 2309-2315.	1.7	208
8	Drosophila Argonaute1 and Argonaute2 Employ Distinct Mechanisms for Translational Repression. Molecular Cell, 2009, 34, 58-67.	4.5	158
9	Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Molecular Cell, 2019, 75, 875-887.e5.	4.5	153
10	Cell-fate determination by ubiquitin-dependent regulation of translation. Nature, 2015, 525, 523-527.	13.7	145
11	Complete chemical structures of human mitochondrial tRNAs. Nature Communications, 2020, 11, 4269.	5.8	144
12	The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA. Molecular Cell, 2019, 73, 738-748.e9.	4.5	128
13	Genome-wide Survey of Ribosome Collision. Cell Reports, 2020, 31, 107610.	2.9	119
14	Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature, 2015, 521, 533-536.	13.7	115
15	The Growing Toolbox for Protein Synthesis Studies. Trends in Biochemical Sciences, 2017, 42, 612-624.	3.7	104
16	Codon bias confers stability to human <scp>mRNA</scp> s. EMBO Reports, 2019, 20, e48220.	2.0	100
17	Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7831-7836.	3.3	89
18	Characterization ofArabidopsisdecapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development. FEBS Letters, 2007, 581, 2455-2459.	1.3	79

SHINTARO IWASAKI

#	Article	IF	CITATIONS
19	Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes. PLoS Genetics, 2017, 13, e1006554.	1.5	67
20	A widespread family of heat-resistant obscure (Hero) proteins protect against protein instability and aggregation. PLoS Biology, 2020, 18, e3000632.	2.6	51
21	Argonaute-mediated translational repression (and activation). Fly, 2009, 3, 205-208.	0.9	48
22	Protocol for Disome Profiling to Survey Ribosome Collision in Humans and Zebrafish. STAR Protocols, 2020, 1, 100168.	0.5	40
23	Sexually dimorphic role of oxytocin in medaka mate choice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4802-4808.	3.3	38
24	Dual targeting of DDX3 and elF4A by the translation inhibitor rocaglamide A. Cell Chemical Biology, 2021, 28, 475-486.e8.	2.5	37
25	Selectivity of mRNA degradation by autophagy in yeast. Nature Communications, 2021, 12, 2316.	5.8	35
26	Argonaute-mediated translational repression (and activation). Fly, 2009, 3, 204-6.	0.9	31
27	Ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates the production of secondary siRNAs in plants. Cell Reports, 2021, 35, 109300.	2.9	30
28	In vitro reconstitution of chaperone-mediated human RISC assembly. Rna, 2018, 24, 6-11.	1.6	25
29	Ribosome slowdown triggers codonâ€mediated mRNA decay independently of ribosome quality control. EMBO Journal, 2022, 41, e109256.	3.5	25
30	Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Research, 2021, 49, 7298-7317.	6.5	22
31	Ribosomal protein S7 ubiquitination during ER stress in yeast is associated with selective mRNA translation and stress outcome. Scientific Reports, 2020, 10, 19669.	1.6	21
32	elF2B-capturing viral protein NSs suppresses the integrated stress response. Nature Communications, 2021, 12, 7102.	5.8	21
33	Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nature Communications, 2022, 13, 470.	5.8	20
34	Seeing translation. Science, 2016, 352, 1391-1392.	6.0	19
35	The Plant Translatome Surveyed by Ribosome Profiling. Plant and Cell Physiology, 2019, 60, 1917-1926.	1.5	19
36	Translational Landscape of Protein-Coding and Non-Protein-Coding RNAs upon Light Exposure in Arabidopsis. Plant and Cell Physiology, 2020, 61, 536-545.	1.5	15

SHINTARO IWASAKI

#	Article	IF	CITATIONS
37	Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO Journal, 2021, 40, e108299.	3.5	13
38	METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. ELife, 0, 11, .	2.8	11
39	Implications of RNG140 (caprin2)-mediated translational regulation in eye lens differentiation. Journal of Biological Chemistry, 2020, 295, 15029-15044.	1.6	10
40	Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chemical Biology, 2022, 29, 259-275.e10.	2.5	9
41	The Pentatricopeptide Repeat Protein PGR3 Is Required for the Translation of <i>petL</i> and <i>ndhG</i> by Binding Their 5′ UTRs. Plant and Cell Physiology, 2021, 62, 1146-1155.	1.5	9
42	Spliceostatin A interaction with SF3B limits U1 snRNP availability and causes premature cleavage and polyadenylation. Cell Chemical Biology, 2021, 28, 1356-1365.e4.	2.5	8
43	The landscape of translational stall sites in bacteria revealed by monosome and disome profiling. Rna, 2022, 28, 290-302.	1.6	8
44	Mito-FUNCAT-FACS reveals cellular heterogeneity in mitochondrial translation. Rna, 2022, 28, 895-904.	1.6	6
45	Cell Type-Specific Survey of Epigenetic Modifications by Tandem Chromatin Immunoprecipitation Sequencing. Scientific Reports, 2018, 8, 1143.	1.6	5
46	N-terminal deletion of Swi3 created by the deletion of a dubious ORF YJL175W mitigates protein burden effect in S. cerevisiae. Scientific Reports, 2020, 10, 9500.	1.6	5
47	Compounds for selective translational inhibition. Current Opinion in Chemical Biology, 2022, 69, 102158.	2.8	5
48	Reconstitution of RNA Interference Machinery. Methods in Molecular Biology, 2018, 1680, 131-143.	0.4	4
49	UPA-seq: prediction of functional lncRNAs using differential sensitivity to UV crosslinking. Rna, 2018, 24, 1785-1802.	1.6	4
50	Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. Journal of Biological Chemistry, 2019, 294, 15900-15911.	1.6	4
51	Into the matrix: current methods for mitochondrial translation studies. Journal of Biochemistry, 2022, 171, 379-387.	0.9	3
52	Species-specific formation of paraspeckles in intestinal epithelium revealed by characterization of <i>NEAT1</i> in naked mole-rat. Rna, 2022, 28, 1128-1143.	1.6	2
53	TChIP-Seq: Cell-Type-Specific Epigenome Profiling. Journal of Visualized Experiments, 2019, , .	0.2	1
54	Regulation of mRNA translation machinery in influenza virus infection. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-YIA-10.	0.0	0

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 18, e3000632.		0
56	Title is missing!. , 2020, 18, e3000632.		0
57	Title is missing!. , 2020, 18, e3000632.		0
58	Title is missing!. , 2020, 18, e3000632.		0
59	Title is missing!. , 2020, 18, e3000632.		0
60	Title is missing!. , 2020, 18, e3000632.		0