Vasilii A Ilichev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New luminescent 10-oxybenzoquinolate complexes of rare earth metals. Journal of Rare Earths, 2023, 41, 1135-1143.	2.5	3
2	Synthesis, structure, and luminescence properties of sodium and ytterbium complexes with 2-(benzothiazol-2-yl)selenophenolate ligands. Russian Chemical Bulletin, 2022, 71, 298-305.	0.4	1
3	Luminescence thermochromism in novel mixed Eu(<scp>ii</scp>)–Cu(<scp>i</scp>) iodide. Dalton Transactions, 2021, 50, 14244-14251.	1.6	1
4	Zn(II) complexes of substituted oxyacridinate ligands. Synthesis, structure and properties. Journal of Molecular Structure, 2021, 1229, 129798.	1.8	2
5	Synthesis, Structure and Luminescent Properties of Rareâ€Earthâ€Metal Oxyacridinates. European Journal of Inorganic Chemistry, 2021, 2021, 1441-1451.	1.0	4
6	Near infrared luminescence of Nd, Er and Yb complexes with perfluorinated 2-mercaptobenzothiazolate and phosphine oxide ligands. Optical Materials, 2021, 118, 111241.	1.7	10
7	Effect of the Nature of Substituents in the Oxyacridine Ligands on the Luminescence Properties and Cytotoxicity of the Zinc Complexes. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 730-740.	0.3	1
8	Cathodoluminescence of organo-lanthanide complexes. Applied Physics Letters, 2020, 116, .	1.5	3
9	Unexpected Findings in a Simple Metathesis Reaction of Europium and Ytterbium Diiodides with Perfluorinated Mercaptobenzothiazolates of Alkali Metals. Organometallics, 2020, 39, 2972-2983.	1.1	6
10	Synthesis and Luminescent Properties of Lanthanide Complexes with Benzothiazolylphenolate and -Naphtholate Ligands. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 534-544.	0.3	2
11	Cerium(<scp>iii</scp>) complexes with azolyl-substituted thiophenolate ligands: synthesis, structure and red luminescence. RSC Advances, 2019, 9, 24110-24116.	1.7	8
12	X-Ray excited luminescence of organo-lanthanide complexes. Physical Chemistry Chemical Physics, 2019, 21, 16288-16292.	1.3	20
13	Features of the Molecular Structure and Luminescence of Rare-Earth Metal Complexes with Perfluorinated (Benzothiazolyl)phenolate Ligands. Molecules, 2019, 24, 2376.	1.7	9
14	Polynuclear Heteroligand Yb(III)–Er(III) Complexes as Potential Upconversion Materials. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 712-720.	0.3	4
15	Impact of n,Î ³ -irradiation on organic complexes of rare earth metals. Scientific Reports, 2019, 9, 13314.	1.6	7
16	Synthesis, structure and long-lived NIR luminescence of lanthanide ate complexes with perfluorinated 2-mercaptobenzothiazole. Dalton Transactions, 2019, 48, 1060-1066.	1.6	21
17	Cyclometalated Iridium(III) Complexes with a Norbornene-Substituted Picolinate Ligand and Electroluminescent Polymers Based on them. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 856-866.	0.3	3
18	Synthesis, structure, and luminescent properties of lanthanide complexes containing 1,10-phenanthroline and perfluorinated 2-mercaptobenzothiazolate ligands. Russian Chemical Bulletin, 2018, 67, 1261-1267.	0.4	8

VASILII A ILICHEV

#	Article	IF	CITATIONS
19	Lanthanide complexes with oxygen bridges as models for potential up-conversion materials. Inorganica Chimica Acta, 2018, 483, 379-385.	1.2	5
20	Electroluminescent Iridium-Containing Functionalized Polynorbornenes Emitting Red Light. Russian Journal of General Chemistry, 2018, 88, 985-991.	0.3	2
21	Structural and luminescent properties of homo- and heterometallic complexes of La, Li and Na with 2-(2-benzoxyazol-2-yl)phenolate ligands. Journal of Luminescence, 2018, 203, 286-291.	1.5	3
22	LMCT facilitated room temperature phosphorescence and energy transfer in substituted thiophenolates of Gd and Yb. Dalton Transactions, 2017, 46, 3041-3050.	1.6	37
23	Cyclometallated iridium(III) complex with 1-phenylisoquinoline and norbornene-substituted pyrazolonate ligands and related electroluminescent polymers. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 491-499.	0.3	6
24	Fluorinated mercaptobenzothiazolates of lanthanides: Synthesis, structure and photoluminescence. Journal of Molecular Structure, 2017, 1148, 201-205.	1.8	10
25	Electroluminescent copper-containing polymers based on copper(I) norbornene-substituted complexes. Russian Journal of General Chemistry, 2017, 87, 1184-1191.	0.3	3
26	Synthesis and luminescent properties of iridium(III) ionic binuclear complexes with 1,4-bis[2-(2-pyridyl)benzimidazolato]butane as a bridging ligand. Russian Journal of General Chemistry, 2017, 87, 1192-1197.	0.3	2
27	Dinuclear copper(I) complexes with substituted benzimidazole ligands. Synthesis and photo- and electroluminescent properties. Russian Journal of General Chemistry, 2017, 87, 1015-1021.	0.3	1
28	Synthesis, structure and luminescent properties of lanthanide fluoroalkoxides. Dalton Transactions, 2016, 45, 3464-3472.	1.6	20
29	Copolymers based on norbornene-containing pyridinylbenzimidazole copper(I) complex. Synthesis, photoluminescence, and electroluminescence. Russian Journal of General Chemistry, 2015, 85, 1140-1145.	0.3	2
30	Luminescent properties of 2-mercaptobenzothiazolates of trivalent lanthanides. Physical Chemistry Chemical Physics, 2015, 17, 11000-11005.	1.3	17
31	Synthesis and luminescent properties of heteroleptic benzothiazolyl–naphtholates of ytterbium. Synthetic Metals, 2015, 203, 117-121.	2.1	6
32	Synthesis, crystal structures and luminescent properties of the copper(I) pyrazolonate complexes. Inorganica Chimica Acta, 2015, 425, 189-197.	1.2	6
33	Monophthalocyanine complexes of samarium and terbium with axial ligands: synthesis, structure and optoelectronic properties. Journal of Rare Earths, 2014, 32, 1101-1108.	2.5	6
34	Green-light emitting norbornene based terbium-containing copolymers. Synthesis, photo- and electroluminescent properties. Synthetic Metals, 2014, 190, 86-91.	2.1	13
35	Electroluminescent properties of lanthanide pentafluorophenolates. Journal of Materials Chemistry C, 2014, 2, 1532-1538.	2.7	32
36	Substituted naphtholates of rare earth metals as emissive materials. RSC Advances, 2014, 4, 35505-35510.	1.7	13

VASILII A ILICHEV

#	Article	IF	CITATIONS
37	Copper-containing copolymers based on the norbornene monomers. Synthesis, photo-, and electroluminescent properties. Russian Journal of General Chemistry, 2013, 83, 72-79.	0.3	8
38	Lanthanide pentafluorophenolates. Synthesis, structure and luminescent properties. Journal of Organometallic Chemistry, 2013, 747, 126-132.	0.8	15
39	Lanthanide complexes with substituted naphtholate ligands: extraordinary bright near-infrared luminescence of ytterbium. Russian Chemical Bulletin, 2013, 62, 392-397.	0.4	19
40	Synthesis and luminescent properties of 3-(2-benzoxazol-2-yl)- and 3-(2-benzothiazol-2-yl)-2-naphtholates of some non-transition and rare earth metals. Synthetic Metals, 2013, 164, 55-59.	2.1	16
41	Lanthanide phenolates with heterocyclic substituents. Synthesis, structure and luminescent properties. Polyhedron, 2013, 50, 112-120.	1.0	33
42	Complex of copper(I) with norbornene-substituted pyridinylbenzimidazole ligand and copper-containing carbochain copolymers based on this complex: Synthesis, photo- and electroluminescent properties. Russian Journal of Applied Chemistry, 2012, 85, 1711-1717.	0.1	8
43	Terbium-containing copolymers based on the norbornene functional derivatives. Synthesis, photoluminescent and electroluminescent properties. Russian Journal of General Chemistry, 2012, 82, 1895-1908.	0.3	15
44	Synthesis, quantum chemical calculations, and luminescent properties of scandium, europium, gadolinium, and terbium 1-(2-pyridyl)naphtholate complexes. High Energy Chemistry, 2012, 46, 323-330.	0.2	3
45	Synthesis and luminescence properties of lithium, zinc and scandium 1-(2-pyridyl)naphtholates. Organic Electronics, 2012, 13, 3203-3210.	1.4	7
46	A cyclometalated platinum(II) complex with the 4-isobutyryl-3-methyl-1-phenylpyrazol-5-onate ligand as a new efficient emitter for organic light-emitting diodes. Russian Chemical Bulletin, 2012, 61, 1671-1672.	0.4	4
47	Synthesis and luminescent properties of new europium-containing copolymers based on norbornene functional derivatives. Russian Chemical Bulletin, 2012, 61, 2243-2251.	0.4	4
48	Electroluminescence of lanthanide perfluorophenoxides. Russian Chemical Bulletin, 2012, 61, 2190-2191.	0.4	1
49	Photo- and electroluminescence properties of complexes of europium with ligands incorporated in a poly-N-vinylcarbazole chain. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 430.	0.2	4
50	Synthesis, photo- and electroluminescent properties of norbornene based platinum-containing copolymers. Synthetic Metals, 2011, 161, 1043-1050.	2.1	18
51	Scandium 2-mercaptobenzothiazolate: Synthesis, structure and electroluminescent properties. Polyhedron, 2010, 29, 400-404.	1.0	10
52	Experimental and theoretical study of the effect of the substituent nature on the luminescent properties of scandium complexes with substituted 8-hydroxyquinolines. High Energy Chemistry, 2010, 44, 503-510.	0.2	5
53	Synthesis, Structures, and Electroluminescent Properties of Scandium N,O-Chelated Complexes toward Near-White Organic Light-Emitting Diodes. Inorganic Chemistry, 2010, 49, 5094-5100.	1.9	57
54	Yellow–green organic light-emitting diode based on tris(2-methyl-8-quinolinolate) scandium. Synthetic Metals, 2010, 160, 2476-2480.	2.1	1

VASILII A ILICHEV

#	Article	IF	CITATIONS
55	New type of arrangement of rare-earth quinolinolate. Molecular structure of scandium 2-methyl-8-quinolinolate. Inorganica Chimica Acta, 2009, 362, 1393-1395.	1.2	21
56	2-Mercaptobenzothiazolate complexes of rare earth metals and their electroluminescent properties. Organic Electronics, 2009, 10, 623-630.	1.4	29
57	Lanthanide imidodiphosphinate complexes. Synthetic Metals, 2009, 159, 1398-1402.	2.1	31
58	Modification of anode surface in organic light-emitting diodes by chalcogenes. Applied Surface Science, 2008, 254, 2216-2219.	3.1	17
59	Rare-earth metal 8-hydroxyquinolinate complexes as materials for organic light-emitting diodes. Russian Chemical Bulletin, 2008, 57, 2281-2284.	0.4	12
60	Methyl- and propylacetamidinates of lanthanides: Structures, catalytic and some physical properties. Inorganica Chimica Acta, 2008, 361, 2533-2539.	1.2	11
61	New cathode materials for organic light-emitting diodes: Tm:Yb and Eu:Yb. Nanotechnologies in Russia, 2008, 3, 470-473.	0.7	14
62	Electroluminescent characteristics of scandium and yttrium 8-quinolinolates. Journal of Applied Physics, 2008, 104, 053706.	1.1	24
63	Novel ditopic 2-mercaptothiazoles and their sodium salts: synthesis, structural diversity and luminescence. New Journal of Chemistry, 0, , .	1.4	2