
F Javier Espejo-Carpio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/130442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chemistry, 2021, 354, 129473.	4.2	32
2	Bioactive fish hydrolysates resistance to food processing. LWT - Food Science and Technology, 2020, 117, 108670.	2.5	21
3	Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides. Food and Bioproducts Processing, 2020, 123, 217-224.	1.8	30
4	Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates. Food Research International, 2020, 137, 109572.	2.9	26
5	Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods, 2020, 9, 983.	1.9	53
6	Development of Fish Oil-Loaded Microcapsules Containing Whey Protein Hydrolysate as Film-Forming Material for Fortification of Low-Fat Mayonnaise. Foods, 2020, 9, 545.	1.9	34
7	Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods, 2020, 9, 636.	1.9	43
8	Protein derived emulsifiers with antioxidant activity for stabilization of omega-3 emulsions. Food Chemistry, 2020, 329, 127148.	4.2	30
9	Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein. Food Chemistry, 2020, 328, 127096.	4.2	57
10	Evaluation of <i>Tenebrio molitor</i> protein as a source of peptides for modulating physiological processes. Food and Function, 2020, 11, 4376-4386.	2.1	31
11	The Role of Antioxidants and Encapsulation Processes in Omega-3 Stabilization. Food Bioactive Ingredients, 2020, , 339-386.	0.3	3
12	Bi-objective optimization of tuna protein hydrolysis to produce aquaculture feed ingredients. Food and Bioproducts Processing, 2019, 115, 26-35.	1.8	14
13	Valorisation of tuna viscera by endogenous enzymatic treatment. International Journal of Food Science and Technology, 2019, 54, 1100-1108.	1.3	11
14	Artificial neuronal networks (ANN) to model the hydrolysis of goat milk protein by subtilisin and trypsin. Journal of Dairy Research, 2018, 85, 339-346.	0.7	12
15	Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: effect of enzymatic treatment and degree of hydrolysis. Journal of the Science of Food and Agriculture, 2017, 97, 299-308.	1.7	48
16	Modelling of the production of ACE inhibitory hydrolysates of horse mackerel using proteases mixtures. Food and Function, 2016, 7, 3890-3901.	2.1	13
17	Artificial neural networks to model the production of blood protein hydrolysates for plant fertilisation. Journal of the Science of Food and Agriculture, 2016, 96, 207-214.	1.7	5
18	Effect of digestive enzymes on the bioactive properties of goat milk protein hydrolysates. International Dairy Journal, 2016, 54, 21-28.	1.5	21

#	Article	IF	CITATIONS
19	Increasing the angiotensin converting enzyme inhibitory activity of goat milk hydrolysates by cross-flow filtration through ceramic membranes. Desalination and Water Treatment, 2015, 56, 3544-3553.	1.0	1
20	Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. Journal of Functional Foods, 2015, 18, 95-105.	1.6	50
21	Production of goat milk protein hydrolysate enriched in ACE-inhibitory peptides by ultrafiltration. Journal of Dairy Research, 2014, 81, 385-393.	0.7	11
22	Spray Drying of Goat Milk Protein Hydrolysates with Angiotensin Converting Enzyme Inhibitory Activity. Food and Bioprocess Technology, 2014, 7, 2388-2396.	2.6	6
23	Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International, 2014, 65, 469-476.	2.9	99
24	Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases. International Dairy Journal, 2014, 39, 28-40.	1.5	62
25	Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions. International Dairy Journal, 2013, 32, 175-183.	1.5	55
26	Lipid characterization and properties of protein hydrolysates obtained from discarded Mediterranean fish species. Journal of the Science of Food and Agriculture, 2013, 93, 3777-3784.	1.7	21
27	Optimisation of the hydrolysis of goat milk protein for the production of ACE-inhibitory peptides. Journal of Dairy Research, 2013, 80, 214-222.	0.7	12
28	Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein. Biochemical Engineering Journal, 2011, 53, 305-310.	1.8	32