Mikhail V Zubkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304138/publications.pdf Version: 2024-02-01

MIKHAIL V ZUBROV

#	Article	IF	CITATIONS
1	High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature, 2008, 455, 224-226.	27.8	380
2	Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature, 2009, 457, 577-580.	27.8	338
3	The role of mixotrophic protists in the biological carbon pump. Biogeosciences, 2014, 11, 995-1005.	3.3	314
4	Reconciliation of the carbon budget in the ocean's twilight zone. Nature, 2014, 507, 480-483.	27.8	307
5	Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME Journal, 2010, 4, 1180-1192.	9.8	276
6	High Rate of Uptake of Organic Nitrogen Compounds by Prochlorococcus Cyanobacteria as a Key to Their Dominance in Oligotrophic Oceanic Waters. Applied and Environmental Microbiology, 2003, 69, 1299-1304.	3.1	262
7	Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5756-5760.	7.1	255
8	Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep-Sea Research Part I: Oceanographic Research Papers, 1998, 45, 1339-1355.	1.4	248
9	Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environmental Microbiology, 2001, 3, 304-311.	3.8	243
10	Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environmental Microbiology, 2009, 11, 2078-2093.	3.8	219
11	Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Progress in Oceanography, 2000, 45, 369-386.	3.2	209
12	Comparison of Cellular and Biomass Specific Activities of Dominant Bacterioplankton Groups in Stratified Waters of the Celtic Sea. Applied and Environmental Microbiology, 2001, 67, 5210-5218.	3.1	191
13	Improving photosynthesis for algal biofuels: toward a green revolution. Trends in Biotechnology, 2011, 29, 615-623.	9.3	168
14	Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environmental Microbiology, 2000, 2, 191-201.	3.8	158
15	Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environmental Microbiology, 2007, 9, 1278-1290.	3.8	143
16	High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Marine Ecology - Progress Series, 2003, 257, 1-11.	1.9	136
17	Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquatic Microbial Ecology, 2005, 39, 145-157.	1.8	131
18	Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 3017-3038.	1.4	124

#	Article	IF	CITATIONS
19	Biochemical prey recognition by planktonic protozoa. Environmental Microbiology, 2007, 9, 216-222.	3.8	124
20	Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1516-1529.	1.4	115
21	Plankton respiration in the Eastern Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 787-813.	1.4	114
22	Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnology and Oceanography, 2007, 52, 2190-2198.	3.1	114
23	Determination of Total Protein Content of Bacterial Cells by SYPRO Staining and Flow Cytometry. Applied and Environmental Microbiology, 1999, 65, 3251-3257.	3.1	105
24	Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environmental Microbiology, 2007, 9, 2079-2089.	3.8	105
25	Microbial community structure and standing stocks in the NE Atlantic in June and July of 1996. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 963-985.	1.4	95
26	Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1616-1634.	1.4	95
27	Flow cytometric enumeration of DNA-stained oceanic planktonic protists. Journal of Plankton Research, 2006, 29, 79-86.	1.8	95
28	The Atlantic Meridional Transect (AMT) Programme: A contextual view 1995–2005. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1485-1515.	1.4	90
29	Variation in the transfer of energy in marine plankton along a productivity gradient in the Atlantic Ocean. Limnology and Oceanography, 2006, 51, 2084-2091.	3.1	89
30	Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnology and Oceanography: Methods, 2011, 9, 329-339.	2.0	86
31	SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect. Aquatic Microbial Ecology, 2006, 45, 107-113.	1.8	85
32	Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean. Aquatic Microbial Ecology, 2000, 21, 13-20.	1.8	84
33	Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean. FEMS Microbiology Ecology, 2008, 63, 36-45.	2.7	84
34	Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiology Ecology, 2004, 50, 153-161.	2.7	78
35	Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean. Systematic and Applied Microbiology, 2011, 34, 470-475.	2.8	77
36	Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front. Aquatic Microbial Ecology, 2005, 40, 241-249.	1.8	77

#	Article	IF	CITATIONS
37	Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 1010-1019.	1.5	75
38	<i>In situ</i> interactions between photosynthetic picoeukaryotes and bacterioplankton in the <scp>A</scp> tlantic <scp>O</scp> cean: evidence for mixotrophy. Environmental Microbiology Reports, 2013, 5, 835-840.	2.4	74
39	Photoheterotrophy in marine prokaryotes. Journal of Plankton Research, 2009, 31, 933-938.	1.8	72
40	<i>Prochlorococcus</i> can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8597-8602.	7.1	72
41	Bacterial growth and grazing loss in contrasting areas of North and South Atlantic. Journal of Plankton Research, 2000, 22, 685-711.	1.8	70
42	Production of siderophore type chelates in Atlantic Ocean waters enriched with different carbon and nitrogen sources. Marine Chemistry, 2011, 124, 90-99.	2.3	67
43	What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?. Geophysical Research Letters, 2016, 43, 4457-4466.	4.0	67
44	High abundance and dark CO ₂ fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea. Limnology and Oceanography, 2008, 53, 14-22.	3.1	65
45	Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2863-2885.	1.4	64
46	Prokaryoplankton standing stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean: Evaluation of inter-annual variability. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1530-1547.	1.4	64
47	Comparable light stimulation of organic nutrient uptake by SAR11 and <i>Prochlorococcus</i> in the North Atlantic subtropical gyre. ISME Journal, 2013, 7, 603-614.	9.8	64
48	Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2951-2963.	1.4	60
49	Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 3067-3101.	1.4	57
50	Diel rhythmicity in amino acid uptake by <i>Prochlorococcus</i> . Environmental Microbiology, 2008, 10, 2124-2131.	3.8	54
51	Mesoscale distribution of dominant bacterioplankton groups in the northern North Sea in early summer. Aquatic Microbial Ecology, 2002, 29, 135-144.	1.8	52
52	Differential microbial uptake of dissolved amino acids and amino sugars in surface waters of the Atlantic Ocean. Journal of Plankton Research, 2007, 30, 211-220.	1.8	51
53	Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquatic Microbial Ecology, 2006, 42, 119-126.	1.8	50
54	Carbon export efficiency and phytoplankton community composition in the <scp>A</scp> tlantic sector of the <scp>A</scp> rctic <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2015, 120, 3896-3912.	2.6	50

#	Article	IF	CITATIONS
55	Sampling bias misrepresents the biogeographical significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 2019, 28, 418-428.	5.8	49
56	The emergence of automated high-frequency flow cytometry: revealing temporal and spatial phytoplankton variability. Journal of Plankton Research, 2007, 30, 333-343.	1.8	48
57	Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth. Scientific Reports, 2018, 8, 17182.	3.3	44
58	Differential grazing of two heterotrophic nanoflagellates on marine <i>Synechococcus</i> strains. Environmental Microbiology, 2009, 11, 1767-1776.	3.8	43
59	Basinâ€scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect. Environmental Microbiology, 2011, 13, 975-990.	3.8	43
60	Grazing of intertidal benthic foraminifera on bacteria: Assessment using pulse-chase radiotracing. Journal of Experimental Marine Biology and Ecology, 2011, 399, 25-34.	1.5	43
61	Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean. Nature Communications, 2014, 5, 3776.	12.8	42
62	Dead in the water: The fate of copepod carcasses in the York River estuary, Virginia. Limnology and Oceanography, 2010, 55, 1821-1834.	3.1	41
63	Flow Cytometric Analysis of Characteristics of Hybridization of Species-Specific Fluorescent Oligonucleotide Probes to rRNA of Marine Nanoflagellates. Applied and Environmental Microbiology, 1997, 63, 938-944.	3.1	40
64	Efficient CO2 fixation by surface <i>Prochlorococcus</i> in the Atlantic Ocean. ISME Journal, 2014, 8, 2280-2289.	9.8	39
65	Ingestion and assimilation by marine protists fed on bacteria labeled with radioactive thymidine and leucine estimated without separating predator and prey. Microbial Ecology, 1995, 30, 157-70.	2.8	38
66	Cell surface lectin-binding glycoconjugates on marine planktonic protists. FEMS Microbiology Letters, 2006, 265, 202-207.	1.8	38
67	Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas. Biogeosciences, 2014, 11, 4733-4752.	3.3	37
68	Growth of Amoebae and Flagellates on Bacteria Deposited on Filters. Microbial Ecology, 1999, 37, 107-115.	2.8	35
69	Differential responses of <i>Prochlorococcus</i> and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical Northeast Atlantic Ocean. FEMS Microbiology Letters, 2010, 306, 82-89.	1.8	35
70	Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): Fieldwork, Synthesis, and Modeling Efforts. Frontiers in Marine Science, 2016, 3, .	2.5	35
71	Fluorescent oligonucleotide rDNA probes that specifically bind to a common nanoflagellate, Paraphysomonas vestita. Microbiology (United Kingdom), 1997, 143, 1717-1727.	1.8	34
72	Extreme spatial variability in marine picoplankton and its consequences for interpreting Eulerian time-series. Biology Letters, 2005, 1, 366-369.	2.3	34

#	Article	IF	CITATIONS
73	<i>In situ</i> associations between marine photosynthetic picoeukaryotes and potential parasites – a role for fungi?. Environmental Microbiology Reports, 2016, 8, 445-451.	2.4	30
74	Invariable biomassâ€specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean. Environmental Microbiology, 2011, 13, 3266-3274.	3.8	29
75	Planktonic carbon budget in the eastern subtropical North Atlantic. Aquatic Microbial Ecology, 2007, 48, 261-275.	1.8	28
76	Comparison of Growth Efficiencies of Protozoa Growing on Bacteria Deposited on Surfaces and in Suspension. Journal of Eukaryotic Microbiology, 2000, 47, 62-69.	1.7	27
77	On-Site Analysis of Bacterial Communities of the Ultraoligotrophic South Pacific Gyre. Applied and Environmental Microbiology, 2019, 85, .	3.1	27
78	Ultraplankton distribution in surface waters of the Mozambique Channel-flow cytometry and satellite imagery. Aquatic Microbial Ecology, 2003, 33, 155-161.	1.8	27
79	Coexistence of dominant groups in marine bacterioplankton community—a combination of experimental and modelling approaches. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 519-529.	0.8	26
80	Bacterivory by starved marine heterotrophic nanoflagellates of two species which feed differently, estimated by uptake of dual radioactive-labelled bacteria. FEMS Microbiology Ecology, 1995, 17, 57-66.	2.7	25
81	"Pomacytosisâ€â€"Semi-extracellular phagocytosis of cyanobacteria by the smallest marine algae. PLoS Biology, 2018, 16, e2003502.	5.6	25
82	Photoheterotrophy of bacterioplankton is ubiquitous in the surface oligotrophic ocean. Progress in Oceanography, 2015, 135, 139-145.	3.2	23
83	Heterotrophic bacterial turnover along the 20°W meridian between 59°N and 37°N in July 1996. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 987-1001.	1.4	22
84	Elemental composition of natural populations of key microbial groups in <scp>A</scp> tlantic waters. Environmental Microbiology, 2013, 15, 3054-3064.	3.8	22
85	Glucose Uptake in Prochlorococcus: Diversity of Kinetics and Effects on the Metabolism. Frontiers in Microbiology, 2017, 8, 327.	3.5	22
86	Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing. Remote Sensing, 2018, 10, 847.	4.0	21
87	Accumulation of ambient phosphate into the periplasm of marine bacteria is proton motive force dependent. Nature Communications, 2020, 11, 2642.	12.8	21
88	Bacterioplankton of low and high DNA content in the suboxic waters of the Arabian Sea and the Gulf of Oman: abundance and amino acid uptake. Aquatic Microbial Ecology, 2006, 43, 23-32.	1.8	21
89	Heterotrophic nanoplankton biomass measured by a glucosaminidase assay. FEMS Microbiology Ecology, 1998, 25, 97-106.	2.7	20
90	Digestion of bacterial macromolecules by a mixotrophic flagellate, Ochromonas sp., compared with that by two heterotrophic flagellates, Spumella pudica and Bodo saltans. European Journal of Protistology, 2001, 37, 155-166.	1.5	20

6

#	Article	IF	CITATIONS
91	Spatio-temporal distribution pattern of the picocyanobacterium Synechococcus in lakes of different trophic states: a comparison of flow cytometry and sequencing approaches. Hydrobiologia, 2018, 811, 77-92.	2.0	20
92	Measurement of bacterivory by protists in open ocean waters. FEMS Microbiology Ecology, 1998, 27, 85-102.	2.7	19
93	Temporal patterns of biological dimethylsulfide (DMS) consumption during laboratory-induced phytoplankton bloom cycles. Marine Ecology - Progress Series, 2004, 271, 77-86.	1.9	19
94	Microbial abundance, activity and iron uptake in vicinity of the Crozet Isles in November 2004–January 2005. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 2126-2137.	1.4	18
95	Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista,) Tj ETQq1	. 0 <mark>,78</mark> 4314	rgBT /Overl
96	Plankton community respiration during a coccolithophore bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2929-2950.	1.4	17
97	Dominant oceanic bacteria secure phosphate using a large extracellular buffer. Nature Communications, 2015, 6, 7878.	12.8	17
98	Bacterivory by the ciliate Euplotes in different states of hunger. FEMS Microbiology Ecology, 1996, 20, 137-147.	2.7	15
99	Pâ€affinity measurements of specific osmotroph populations using cellâ€sorting flow cytometry. Limnology and Oceanography: Methods, 2008, 6, 355-363.	2.0	15
100	Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting. FEMS Microbiology Ecology, 2010, 74, 10-18.	2.7	15
101	Low microbial respiration of leucine at ambient oceanic concentration in the mixed layer of the central Atlantic Ocean. Limnology and Oceanography, 2013, 58, 1597-1604.	3.1	15
102	Analysis of photosynthetic picoeukaryote community structure along an extended Ellett Line transect in the northern North Atlantic reveals a dominance of novel prymnesiophyte and prasinophyte phylotypes. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 733-744.	1.4	14
103	Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre. FEMS Microbiology Ecology, 2011, 78, 327-335.	2.7	14
104	20 Years of the Atlantic Meridional Transect—AMT. Limnology and Oceanography Bulletin, 2015, 24, 101-107.	0.4	14
105	Bacterioplankton composition in the Scotia Sea, Antarctica, during the austral summer of 2003. Aquatic Microbial Ecology, 2006, 45, 229-235.	1.8	14
106	Microbial spatial variability: An example from the Celtic Sea. Progress in Oceanography, 2008, 76, 443-465.	3.2	13
107	Protein biomass quantification of unbroken individual foraminifers using nano-spectrophotometry. Biogeosciences, 2012, 9, 3613-3623.	3.3	13
108	Assimilation efficiency of Vibrio bacterial protein biomass by the flagellate Pteridomonas: Assessment using flow cytometric sorting. FEMS Microbiology Ecology, 2005, 54, 281-286.	2.7	12

#	Article	IF	CITATIONS
109	Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 127, 75-92.	1.4	12
110	Determining Atlantic Ocean province contrasts and variations. Progress in Oceanography, 2017, 158, 19-40.	3.2	12
111	Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts. Optics Express, 2020, 28, 25682.	3.4	12
112	Methods of estimating bacterivory by protozoa. European Journal of Protistology, 1998, 34, 273-280.	1.5	11
113	Effect of appendicularians and copepods on bacterioplankton composition and growth in the English Channel. Aquatic Microbial Ecology, 2003, 32, 39-46.	1.8	11
114	The microplankton organisms at the oxic-anoxic interface in the pelagial of the Black Sea. FEMS Microbiology Letters, 1992, 101, 245-250.	1.8	10
115	Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean. Progress in Oceanography, 2017, 158, 99-108.	3.2	10
116	Similarity in microbial amino acid uptake in surface waters of the North and South Atlantic (sub-)tropical gyres. Progress in Oceanography, 2011, 91, 437-446.	3.2	8
117	Loricate choanoflagellates (Acanthoecida) from warm water seas. VI. Pleurasiga Schiller and Parvicorbicula Deflandre. European Journal of Protistology, 2020, 75, 125717.	1.5	8
118	Bacterioplankton reveal years-long retention of Atlantic deep-ocean water by the Tropic Seamount. Scientific Reports, 2020, 10, 4715.	3.3	8
119	Marine bacterioplankton can increase evaporation and gas transfer by metabolizing insoluble surfactants from the air–seawater interface. FEMS Microbiology Letters, 2009, 294, 225-231.	1.8	7
120	Flow cytometric identification of <i>Mamiellales</i> clade II in the Southern Atlantic Ocean. FEMS Microbiology Ecology, 2013, 83, 664-671.	2.7	7
121	Resilience of SAR11 bacteria to rapid acidification in the high latitude open ocean. FEMS Microbiology Ecology, 2016, 92, fiv161.	2.7	6
122	Metal Extraction from Deep-Ocean Mineral Deposits. Elements, 2018, 14, 319-324.	0.5	6
123	Loricate choanoflagellates (Acanthoecida) from warm water seas. VII. Calotheca Thomsen and Moestrup, Stephanacantha Thomsen and Syndetophyllum Thomsen and Moestrup. European Journal of Protistology, 2020, 76, 125728.	1.5	6
124	Hybridisation of picoeukaryotes by eubacterial probes is widespread in the marine environment. Aquatic Microbial Ecology, 2005, 41, 293-297.	1.8	6
125	Internal and External Influences on Near-Surface Microbial Community Structure in the Vicinity of the Cape Verde Islands. Microbial Ecology, 2012, 63, 139-148.	2.8	5
126	Cellâ€specific CO ₂ fixation rates of two distinct groups of plastidic protists in the <scp>A</scp> tlantic <scp>O</scp> cean remain unchanged after nutrient addition. Environmental Microbiology Reports, 2015, 7, 211-218.	2.4	5

#	Article	IF	CITATIONS
127	Impact of ferromanganese ore pollution on phytoplankton CO2 fixation in the surface ocean. Marine Pollution Bulletin, 2019, 146, 1002-1006.	5.0	5
128	Isolation and molecular characterisation of Dunaliella tertiolecta with truncated light-harvesting antenna for enhanced photosynthetic efficiency. Algal Research, 2020, 48, 101917.	4.6	5
129	Bacterivory in seawater samples estimated by a dual radioactive-labelling technique. Journal of Plankton Research, 1997, 19, 209-219.	1.8	4
130	Protozoan feeding on natural and cultured bacteria deposited on inert polymeric and mineral membrane filters. Biofouling, 1999, 14, 25-35.	2.2	4
131	Assessing amino acid uptake by phototrophic nanoflagellates in nonaxenic cultures using flow cytometric sorting. FEMS Microbiology Letters, 2009, 298, 166-173.	1.8	4
132	Growth and survival of Neoceratium hexacanthum and Neoceratium candelabrum under simulated nutrient-depleted conditions. Journal of Plankton Research, 2014, 36, 439-449.	1.8	4
133	Targeted Genomics of Flow Cytometrically Sorted Cultured and Uncultured Microbial Groups. Methods in Molecular Biology, 2014, 1096, 203-212.	0.9	4
134	Evaluation of the efficiency of metabolism of dinoflagellate phosphorus and carbon by a planktonic ciliate. European Journal of Protistology, 2009, 45, 166-173.	1.5	3
135	Variability in ultraplankton at the Porcupine Abyssal Plain study site. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1336-1345.	1.4	3
136	Heterotrophic nanoplankton biomass measured by a glucosaminidase assay. FEMS Microbiology Ecology, 1998, 25, 97-106.	2.7	3
137	Notable predominant morphology of the smallest most abundant protozoa of the open ocean revealed by electron microscopy. Journal of Plankton Research, 2022, 44, 542-558.	1.8	3
138	A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus. Frontiers in Microbiology, 2016, 7, 1592.	3.5	1
139	Bacterivory by the ciliate Euplotes in different states of hunger. FEMS Microbiology Ecology, 1996, 20, 137-147.	2.7	1
140	Measurement of bacterivory by protists in open ocean waters. FEMS Microbiology Ecology, 1998, 27, 85-102.	2.7	0