Jean-Marc Cavaillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Septic shock. Lancet, The, 2005, 365, 63-78.	13.7	1,282
2	Successful Cardiopulmonary Resuscitation After Cardiac Arrest as a "Sepsis-Like―Syndrome. Circulation, 2002, 106, 562-568.	1.6	878
3	Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Critical Care, 2006, 10, 233.	5.8	412
4	Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. PLoS ONE, 2016, 11, e0147198.	2.5	383
5	The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respiratory Medicine,the, 2021, 9, 622-642.	10.7	371
6	Coupled plasma filtration-adsorption in a rabbit model of endotoxic shock. Critical Care Medicine, 2000, 28, 1526-1533.	0.9	358
7	Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. European Journal of Immunology, 2005, 35, 2459-2470.	2.9	312
8	Compensatory anti-inflammatory response syndrome. Thrombosis and Haemostasis, 2009, 101, 36-47.	3.4	292
9	Cytokine Cascade in Sepsis. Scandinavian Journal of Infectious Diseases, 2003, 35, 535-544.	1.5	282
10	Resilience to Bacterial Infection: Difference between Species Could Be Due to Proteins in Serum. Journal of Infectious Diseases, 2010, 201, 223-232.	4.0	227
11	Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon, 2018, 149, 45-53.	1.6	223
12	Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infectious Diseases, The, 2019, 19, e422-e436.	9.1	205
13	NF- κ B Expression in Mononuclear Cells of Patients with Sepsis Resembles That Observed in Lipopolysaccharide Tolerance. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 1877-1883.	5.6	192
14	Compartmentalization of the inflammatory response in sepsis and SIRS. Journal of Endotoxin Research, 2006, 12, 151-170.	2.5	187
15	Recombinant C5a enhances interleukin 1 and tumor necrosis factor release by lipopolysaccharideâ€ s timulated monocytes and macrophages. European Journal of Immunology, 1990, 20, 253-257.	2.9	182
16	Structural and functional analyses of bacterial lipopolysaccharides. Microbes and Infection, 2002, 4, 915-926.	1.9	174
17	NK Cell Tolerance to TLR Agonists Mediated by Regulatory T Cells after Polymicrobial Sepsis. Journal of Immunology, 2012, 188, 5850-5858.	0.8	173
18	Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Molecular Medicine, 2020, 12, e10128.	6.9	166

#	Article	IF	CITATIONS
19	Dissociation between plasma and monocyte-associated cytokines during sepsis. European Journal of Immunology, 1991, 21, 2177-2184.	2.9	164
20	Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients*. Critical Care Medicine, 2006, 34, 2377-2385.	0.9	164
21	Compensatory anti-inflammatory response syndrome. Thrombosis and Haemostasis, 2009, 101, 36-47.	3.4	156
22	Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Shock, 2018, 50, 377-380.	2.1	141
23	The nonspecific nature of endotoxin tolerance. Trends in Microbiology, 1995, 3, 320-324.	7.7	134
24	Gamma Interferon and Granulocyte/Monocyte Colony-stimulating Factor Prevent Endotoxin Tolerance in Human Monocytes by Promoting Interleukin-1 Receptor-associated Kinase Expression and Its Association to MyD88 and Not by Modulating TLR4 Expression. Journal of Biological Chemistry, 2002, 277, 27927-27934.	3.4	122
25	Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Letters, 2007, 581, 3723-3733.	2.8	117
26	Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. Molecular Immunology, 1986, 23, 965-969.	2.2	113
27	Toll-like Receptor-mediated Tumor Necrosis Factor and Interleukin-10 Production Differ during Systemic Inflammation. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 158-164.	5.6	106
28	Toll-like receptors expression and interferon-Î ³ production by NK cells in human sepsis. Critical Care, 2012, 16, R206.	5.8	100
29	Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation. Critical Care, 2010, 14, R61.	5.8	91
30	The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. Journal of Leukocyte Biology, 2011, 90, 413-424.	3.3	86
31	High levels of portal TNF-α during abdominal aortic surgery in man. Cytokine, 1993, 5, 448-453.	3.2	77
32	Compartmentalization of Tolerance to Endotoxin. Journal of Infectious Diseases, 2004, 189, 1295-1303.	4.0	76
33	Contribution of Phagocytosis and Intracellular Sensing for Cytokine Production by Staphylococcus aureus -Activated Macrophages. Infection and Immunity, 2007, 75, 830-837.	2.2	75
34	Lipopolysaccharide-Induced Cytokine Cascade and Lethality in LTα/TNFα-Deficient Mice. Molecular Medicine, 1997, 3, 864-875.	4.4	73
35	Regulation by anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGFβ)of interleukin-8 production by LPS- and/ or TNFα-activated human polymorphonuclear cells. Mediators of Inflammation, 1996, 5, 334-340.	3.0	72
36	Molecular requirement for interleukin 1 induction by lipopolysaccharide-stimulated human monocytes: Involvement of the heptosyl-2-keto 3-deoxyoctulosonate region. European Journal of Immunology, 1986, 16, 87-91.	2.9	70

#	Article	IF	CITATIONS
37	DNAemia Detection by Multiplex PCR and Biomarkers for Infection in Systemic Inflammatory Response Syndrome Patients. PLoS ONE, 2012, 7, e38916.	2.5	67
38	Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology?. Critical Care, 2013, 17, 236.	5.8	66
39	INCREASED PLASMA LEVELS OF SOLUBLE TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS 1 AND PROCALCITONIN AFTER CARDIAC SURGERY AND CARDIAC ARREST WITHOUT INFECTION. Shock, 2007, 28, 406-410.	2.1	65
40	Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immunity, 2010, 16, 288-301.	2.4	62
41	Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study. Intensive Care Medicine, 2018, 44, 1061-1070.	8.2	60
42	Invited review: Compartmentalization of the inflammatory response in sepsis and SIRS. Journal of Endotoxin Research, 2006, 12, 151-170.	2.5	55
43	Administration of Endotoxin Associated with Lipopolysaccharide Tolerance Protects Mice against Fungal Infection. Infection and Immunity, 2000, 68, 3748-3753.	2.2	54
44	Host Response Biomarkers in the Diagnosis of Sepsis: A General Overview. Methods in Molecular Biology, 2015, 1237, 149-211.	0.9	52
45	CD24-Triggered Caspase-Dependent Apoptosis via Mitochondrial Membrane Depolarization and Reactive Oxygen Species Production of Human Neutrophils Is Impaired in Sepsis. Journal of Immunology, 2014, 192, 2449-2459.	0.8	51
46	Gastro-protective, therapeutic and anti-inflammatory activities of Pistacia lentiscus L. fatty oil against ethanol-induced gastric ulcers in rats. Journal of Ethnopharmacology, 2018, 224, 273-282.	4.1	48
47	Contribution of NOD2 to lung inflammation during Staphylococcus aureus-induced pneumonia. Microbes and Infection, 2010, 12, 759-767.	1.9	45
48	Is boosting the immune system in sepsis appropriate?. Critical Care, 2014, 18, 216.	5.8	44
49	Simple Method for Repurification of Endotoxins for Biological Use. Applied and Environmental Microbiology, 2007, 73, 1803-1808.	3.1	43
50	Inner sensors of endotoxin – implications for sepsis research and therapy. FEMS Microbiology Reviews, 2019, 43, 239-256.	8.6	43
51	EX VIVO T-LYMPHOCYTE DERIVED CYTOKINE PRODUCTION IN SIRS PATIENTS IS INFLUENCED BY EXPERIMENTAL PROCEDURES. Shock, 2000, 13, 169-174.	2.1	42
52	Corticoids Normalize Leukocyte Production of Macrophage Migration Inhibitory Factor in Septic Shock. Journal of Infectious Diseases, 2005, 191, 138-144.	4.0	42
53	Part II: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Types of Infections and Organ Dysfunction Endpoints. Shock, 2019, 51, 23-32.	2.1	42
54	H3K4me1 Supports Memory-like NK Cells Induced by Systemic Inflammation. Cell Reports, 2019, 29, 3933-3945.e3.	6.4	42

#	Article	IF	CITATIONS
55	SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock, 2020, 54, 416-437.	2.1	41
56	Administration of Zinc Chelators Improves Survival of Mice Infected with Aspergillus fumigatus both in Monotherapy and in Combination with Caspofungin. Antimicrobial Agents and Chemotherapy, 2016, 60, 5631-5639.	3.2	35
57	Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader. Microbes and Infection, 2016, 18, 577-594.	1.9	35
58	Mechanisms of TNF induction by heat-killed Staphylococcus aureus differ upon the origin of mononuclear phagocytes. American Journal of Physiology - Cell Physiology, 2011, 300, C850-C859.	4.6	31
59	Bench-to-bedside review: Natural killer cells in sepsis - guilty or not guilty?. Critical Care, 2013, 17, 235.	5.8	31
60	Protective or Deleterious Role of Scavenger Receptors SR-A and CD36 on Host Resistance to Staphylococcus aureus Depends on the Site of Infection. PLoS ONE, 2014, 9, e87927.	2.5	30
61	Richard Pfeiffer and Alexandre Besredka: creators of the concept of endotoxin and anti-endotoxin. Microbes and Infection, 2003, 5, 1407-1414.	1.9	28
62	Lung microenvironment contributes to the resistance of alveolar macrophages to develop tolerance to endotoxin*. Critical Care Medicine, 2012, 40, 2987-2996.	0.9	25
63	Intravenous Immunoglobulin with Enhanced Polyspecificity Improves Survival in Experimental Sepsis and Aseptic Systemic Inflammatory Response Syndromes. Molecular Medicine, 2015, 21, 1002-1010.	4.4	24
64	Monocyte TREM-1 membrane expression in non-infectious inflammation. Critical Care, 2009, 13, 152.	5.8	22
65	100th Anniversary of Jules Bordet's Nobel Prize: Tribute to a Founding Father of Immunology. Frontiers in Immunology, 2019, 10, 2114.	4.8	22
66	Cytokine Production by Murine Cells Activated by Erythrogenic Toxin Type A Superantigen of Streptococcus pyogenes. Immunobiology, 1992, 186, 435-448.	1.9	21
67	Immune status in sepsis: the bug, the site of infection and the severity can make the difference. Critical Care, 2010, 14, 167.	5.8	21
68	Translocation of bacterial NOD2 agonist and its link with inflammation. Critical Care, 2009, 13, R124.	5.8	19
69	Polymyxin B for endotoxin removal in sepsis. Lancet Infectious Diseases, The, 2011, 11, 426-427.	9.1	18
70	Specific features of human monocytes activation by monophosphoryl lipid A. Scientific Reports, 2018, 8, 7096.	3.3	18
71	Immunosuppression is Inappropriately Qualifying the Immune Status of Septic and SIRS Patients. Shock, 2019, 52, 307-317.	2.1	18
72	Review: Immunodepression in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon: a review. Journal of Endotoxin Research, 2001, 7, 85-93.	2.5	17

#	Article	IF	CITATIONS
73	Louis Pasteur: Between Myth and Reality. Biomolecules, 2022, 12, 596.	4.0	17
74	Infection-Mediated Priming of Phagocytes Protects against Lethal Secondary Aspergillus fumigatus Challenge. PLoS ONE, 2016, 11, e0153829.	2.5	16
75	β2-Adrenoceptor blockade partially restores ex vivo TNF production following hemorrhagic shock. Cytokine, 2006, 34, 212-218.	3.2	15
76	Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine, 2021, 66, 103291.	6.1	15
77	Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiology, 2016, 11, 293-314.	2.0	13
78	Historical links between toxinology and immunology. Pathogens and Disease, 2018, 76, .	2.0	13
79	Sir Marc Armand Ruffer and Giulio Bizzozero: the first reports on efferocytosis. Journal of Leukocyte Biology, 2013, 93, 39-43.	3.3	12
80	From septicemia to sepsis 3.0—from Ignaz Semmelweis to Louis Pasteur. Genes and Immunity, 2019, 20, 371-382.	4.1	12
81	Local Microenvironment Controls the Compartmentalization of NK Cell Responses during Systemic Inflammation in Mice. Journal of Immunology, 2016, 197, 2444-2454.	0.8	11
82	Compartment diversity in innate immune reprogramming. Microbes and Infection, 2018, 20, 156-165.	1.9	11
83	Cytokines in Streptococcal Infections. Advances in Experimental Medicine and Biology, 1997, 418, 869-879.	1.6	11
84	Good and bad fever. Critical Care, 2012, 16, 119.	5.8	10
85	Duclaux, Chamberland, Roux, Grancher, and Metchnikoff: the five musketeers of Louis Pasteur. Microbes and Infection, 2019, 21, 192-201.	1.9	10
86	COVID-19 and earlier pandemics, sepsis, and vaccines: A historical perspective. Journal of Intensive Medicine, 2021, 1, 4-13.	2.1	9
87	From septicemia to sepsis 3.0 – from Ignaz Semmelweis to Louis Pasteur. Microbes and Infection, 2019, 21, 213-221.	1.9	8
88	Endotoxin and anti-endotoxin: The contribution of the schools of Koch and Pasteur: Life, milestone-experiments and concepts of Richard Pfeiffer (Berlin) and Alexandre Besredka (Paris). Journal of Endotoxin Research, 2002, 8, 71-82.	2.5	7
89	Once upon a time, inflammation. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2021, 27, e20200147.	1.4	6
90	New Approaches to Treat Sepsis: Animal Models «Do Not Work» (Review). Obshchaya Reanimatologiya, 2018, 14, 46-53.	1.0	6

#	Article	IF	CITATIONS
91	André Boivin: A pioneer in endotoxin research and an amazing visionary during the birth of molecular biology. Innate Immunity, 2020, 26, 165-171.	2.4	5
92	Duclaux, Chamberland, Roux, Grancher, and Metchnikoff: the five musketeers of Louis Pasteur. Genes and Immunity, 2019, 20, 344-356.	4.1	4
93	Joseph Alouf (1929-2014). FEMS Microbiology Letters, 2014, 355, 90-91.	1.8	2
94	Altered immune status of circulating T lymphocytes during sepsis: children also. Critical Care, 2014, 18, 486.	5.8	2
95	Pathogen-associated Molecular Patterns. , 2017, , 17-56.		2
96	Inflammation through the Ages: A Historical Perspective. , 0, , 1-16.		1
97	Revisiting Metchnikoff's work in light of the COVID-19 pandemic. Innate Immunity, 2022, 28, 57-66.	2.4	1
98	Fever: Mediators and Mechanisms. , 2017, , 861-890.		0
99	Neutrophils. , 2017, , 253-272.		0