## Saeid Biria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302922/publications.pdf Version: 2024-02-01



SAFID RIDIA

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Gel Polymer Electrolytes Based on Cross-Linked Poly(ethylene glycol) Diacrylate for Calcium-Ion<br>Conduction. ACS Omega, 2021, 6, 17095-17102.                                                                              | 3.5  | 13        |
| 2  | Superhydrophobic Polymer Composite Surfaces Developed via Photopolymerization. ACS Applied Polymer Materials, 2021, 3, 4661-4672.                                                                                            | 4.4  | 4         |
| 3  | A Solid Polymer Electrolyte from Photo-Crosslinked Polytetrahydrofuran and a Cycloaliphatic<br>Epoxide for Lithium-Ion Conduction. MRS Advances, 2020, 5, 2467-2476.                                                         | 0.9  | 4         |
| 4  | Observation of intensity dependent phase-separation in photoreactive monomer–nanoparticle<br>formulations under non-uniform visible light irradiation. Soft Matter, 2020, 16, 7256-7269.                                     | 2.7  | 7         |
| 5  | Plating and Stripping Calcium at Room Temperature in an Ionic-Liquid Electrolyte. ACS Applied Energy<br>Materials, 2020, 3, 2310-2314.                                                                                       | 5.1  | 36        |
| 6  | A Highly Conductive and Thermally Stable Ionic Liquid Gel Electrolyte for Calcium-Ion Batteries. ACS<br>Applied Polymer Materials, 2020, 2, 2111-2118.                                                                       | 4.4  | 30        |
| 7  | Direct Lightâ€Writing of Nanoparticleâ€Based Metalloâ€Dielectric Optical Waveguide Arrays Over Silicon<br>Solar Cells for Wideâ€Angle Light Collecting Modules. Advanced Optical Materials, 2019, 7, 1900661.                | 7.3  | 10        |
| 8  | Plating and Stripping of Calcium in an Alkyl Carbonate Electrolyte at Room Temperature. ACS Applied<br>Energy Materials, 2019, 2, 7738-7743.                                                                                 | 5.1  | 30        |
| 9  | Waveguide-Imprinted Slim Polymer Films: Beam Steering Coatings for Solar Cells. ACS Photonics, 2019,<br>6, 878-885.                                                                                                          | 6.6  | 9         |
| 10 | Microfiber Optic Arrays as Top Coatings for Front-Contact Solar Cells toward Mitigation of Shading<br>Loss. ACS Applied Materials & Interfaces, 2019, 11, 47422-47427.                                                       | 8.0  | 13        |
| 11 | Enhanced Wideâ€Angle Energy Conversion Using Structureâ€Tunable Waveguide Arrays as Encapsulation<br>Materials for Silicon Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2019,<br>216, 1800716. | 1.8  | 9         |
| 12 | Prototyping of Superhydrophobic Surfaces from Structureâ€Tunable Micropillar Arrays Using Visible<br>Light Photocuring. Advanced Engineering Materials, 2019, 21, 1801150.                                                   | 3.5  | 9         |
| 13 | Polymer Encapsulants Incorporating Lightâ€Guiding Architectures to Increase Optical Energy<br>Conversion in Solar Cells. Advanced Materials, 2018, 30, 1705382.                                                              | 21.0 | 14        |
| 14 | Superhydrophobic Microporous Substrates via Photocuring: Coupling Optical Pattern Formation to<br>Phase Separation for Process-Tunable Pore Architectures. ACS Applied Materials & Interfaces, 2018,<br>10, 3094-3105.       | 8.0  | 19        |
| 15 | Control of Morphology in Polymer Blends through Light Self-Trapping: An <i>in Situ</i> Study of<br>Structure Evolution, Reaction Kinetics, and Phase Separation. Macromolecules, 2017, 50, 3617-3626.                        | 4.8  | 33        |
| 16 | Coupling nonlinear optical waves to photoreactive and phase-separating soft matter: Current status and perspectives. Chaos, 2017, 27, 104611.                                                                                | 2.5  | 15        |
| 17 | Synthesis of Micropillar Arrays via Photopolymerization: An in Situ Study of Light-Induced Formation,<br>Growth Kinetics, and the Influence of Oxygen Inhibition. Macromolecules, 2017, 50, 5767-5778.                       | 4.8  | 25        |
| 18 | Simulations of Morphology Evolution in Polymer Blends during Light Self-Trapping. Journal of Physical Chemistry C, 2017, 121, 11717-11726.                                                                                   | 3.1  | 7         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems<br>during Free-Radical Polymerization. Journal of Physical Chemistry C, 2016, 120, 4517-4528. | 3.1 | 24        |