
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 2002, 21, 1552-1563.	8.9	475
2	Improving breast cancer diagnosis with computer-aided diagnosis. Academic Radiology, 1999, 6, 22-33.	2.5	306
3	A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications. IEEE Transactions on Medical Imaging, 2005, 24, 371-380.	8.9	253
4	A receiver operating characteristic partial area index for highly sensitive diagnostic tests Radiology, 1996, 201, 745-750.	7.3	249
5	A Similarity Learning Approach to Content-Based Image Retrieval: Application to Digital Mammography. IEEE Transactions on Medical Imaging, 2004, 23, 1233-1244.	8.9	243
6	Malignant and benign clustered microcalcifications: automated feature analysis and classification Radiology, 1996, 198, 671-678.	7.3	217
7	Computer-aided diagnosis in radiology: potential and pitfalls. European Journal of Radiology, 1999, 31, 97-109.	2.6	195
8	Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics, 2007, 31, 224-235.	5.8	160
9	Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved imageâ€reconstruction algorithms. Medical Physics, 2009, 36, 4920-4932.	3.0	157
10	Detection of clustered microcalcifications using spatial point process modeling. Physics in Medicine and Biology, 2011, 56, 1-17.	3.0	157
11	Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Medical Physics, 1994, 21, 517-524.	3.0	145
12	Potential of Computer-aided Diagnosis to Reduce Variability in Radiologists' Interpretations of Mammograms Depicting Microcalcifications. Radiology, 2001, 220, 787-794.	7.3	133
13	Medical Physics, 2010, 37, 1591-1600.	3.0	133
14	Computerized detection of clustered microcalcifications in digital mammograms: Applications of artificial neural networks. Medical Physics, 1992, 19, 555-560.	3.0	132
15	Effect of case selection on the performance of computer-aided detection schemes. Medical Physics, 1994, 21, 265-269.	3.0	129
16	Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Transactions on Medical Imaging, 2005, 24, 1278-1285.	8.9	127
17	Automated segmentation of digitized mammograms. Academic Radiology, 1995, 2, 1-9.	2.5	120
18	Toward consensus on quantitative assessment of medical imaging systems. Medical Physics, 1995, 22, 1057-1061.	3.0	99

#	Article	IF	CITATIONS
19	An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Medical Physics, 1996, 23, 595-601.	3.0	98
20	Computer-aided detection of clustered microcalcifications on digital mammograms. Medical and Biological Engineering and Computing, 1995, 33, 174-178.	2.8	92
21	Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens. Medical Physics, 1990, 17, 894-904.	3.0	91
22	Microcalcification classification assisted by content-based image retrieval for breast cancer diagnosis. Pattern Recognition, 2009, 42, 1126-1132.	8.1	87
23	Computerized mass detection for digital breast tomosynthesis directly from the projection images. Medical Physics, 2006, 33, 482-491.	3.0	85
24	Scanned-projection digital mammography. Medical Physics, 1987, 14, 717-727.	3.0	84
25	An improved computer-assisted diagnostic scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms. Academic Radiology, 1996, 3, 621-627.	2.5	83
26	COMPUTER-AIDED DETECTION AND DIAGNOSIS OF BREAST CANCER. Radiologic Clinics of North America, 2000, 38, 725-740.	1.8	80
27	Radiologists' Preferences for Digital Mammographic Display. Radiology, 2000, 216, 820-830.	7.3	78
28	Automated mammographic breast density estimation using a fully convolutional network. Medical Physics, 2018, 45, 1178-1190.	3.0	74
29	Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Medical Physics, 2002, 29, 2861-2870.	3.0	69
30	Signal-to-noise properties of mammographic film-screen systems. Medical Physics, 1985, 12, 32-39.	3.0	67
31	Comparison of power spectra for tomosynthesis projections and reconstructed images. Medical Physics, 2009, 36, 1753-1758.	3.0	59
32	Optimally weighted wavelet transform based on supervised training for detection of microcalcifications in digital mammograms. Medical Physics, 1998, 25, 949-956.	3.0	57
33	An "intelligent" workstation for computer-aided diagnosis Radiographics, 1993, 13, 647-656.	3.3	56
34	Computer-aided detection of clustered microcalcifications: An improved method for grouping detected signals. Medical Physics, 1993, 20, 1661-1666.	3.0	53
35	A computational model to generate simulated threeâ€dimensional breast masses. Medical Physics, 2015, 42, 1098-1118.	3.0	52
36	<title>Automated detection of clustered microcalcifications in digital mammograms using wavelet processing techniques</title> . , 1994, 2167, 868.		50

#	Article	IF	CITATIONS
37	Image feature analysis and computer-aided diagnosis in mammography: Reduction of false-positive clustered microcalcifications using local edge-gradient analysis. Medical Physics, 1995, 22, 161-169.	3.0	50
38	Analysis of methods for reducing false positives in the automated detection of clustered microcalcifications in mammograms. Medical Physics, 1998, 25, 1502-1506.	3.0	48
39	Density correction of peripheral breast tissue on digital mammograms Radiographics, 1996, 16, 1403-1411.	3.3	46
40	Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study. Medical Physics, 2008, 35, 1486-1493.	3.0	46
41	Effect of finite phosphor thickness on detective quantum efficiency. Medical Physics, 1989, 16, 773-780.	3.0	43
42	A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms. Medical Physics, 1998, 25, 1613-1620.	3.0	43
43	Clinically Missed Cancer: How Effectively Can Radiologists Use Computer-Aided Detection?. American Journal of Roentgenology, 2012, 198, 708-716.	2.2	41
44	A statistically defined anthropomorphic software breast phantom. Medical Physics, 2012, 39, 3375-3385.	3.0	39
45	Radial gradient-based segmentation of mammographic microcalcifications: Observer evaluation and effect on CAD performance. Medical Physics, 2004, 31, 2648-2657.	3.0	38
46	Computer-aided detection, in its present form, is not an effective aid for screening mammography. Medical Physics, 2006, 33, 811-814.	3.0	38
47	Independent versus Sequential Reading in ROC Studies of Computer-Assist Modalities. Academic Radiology, 2002, 9, 1036-1043.	2.5	37
48	Intelligent CAD workstation for breast imaging using similarity to known lesions and multiple visual prompt aids. , 2002, 4684, 768.		36
49	The hypervolume under the ROC hypersurface of "Near-Guessing" and "Near-Perfect" observers in N-class classification tasks. IEEE Transactions on Medical Imaging, 2005, 24, 293-299.	8.9	36
50	Stereoscopic Digital Mammography: Improved Specificity and Reduced Rate of Recall in a Prospective Clinical Trial. Radiology, 2013, 266, 81-88.	7.3	36
51	Computerized Detection of Mass Lesions in Digital Breast Tomosynthesis Images Using Two- and Three Dimensional Radial Gradient Index Segmentation. Technology in Cancer Research and Treatment, 2004, 3, 437-441.	1.9	35
52	CADe for Early Detection of Breast Cancer—Current Status and Why We Need to Continue to Explore New Approaches. Academic Radiology, 2014, 21, 1320-1321.	2.5	34
53	<title>Variations in measured performance of CAD schemes due to database composition and scoring protocol</title> . , 1998, 3338, 840.		32
54	Importance of Better Human-Computer Interaction in the Era of Deep Learning: Mammography Computer-Aided Diagnosis asÂaÂUse Case. Journal of the American College of Radiology, 2018, 15, 49-52.	1.8	32

#	Article	IF	CITATIONS
55	Optimization and FROC analysis of rule-based detection schemes using a multiobjective approach. IEEE Transactions on Medical Imaging, 1998, 17, 1089-1093.	8.9	29
56	Effect of various noise sources on the detective quantum efficiency of phosphor screens. Medical Physics, 1990, 17, 887-893.	3.0	28
57	Evaluation of imaging properties of a laser film digitizer. Physics in Medicine and Biology, 1992, 37, 273-280.	3.0	28
58	Computerized detection of clustered microcalcifications: evaluation of performance on mammograms from multiple centers Radiographics, 1995, 15, 443-452.	3.3	28
59	Comparison of Independent Double Readings and Computer-Aided Diagnosis (CAD) for the Diagnosis of Breast Calcifications. Academic Radiology, 2006, 13, 84-94.	2.5	28
60	Estimating three-class ideal observer decision variables for computerized detection and classification of mammographic mass lesions. Medical Physics, 2003, 31, 81-90.	3.0	27
61	Computer aided diagnosis of breast cancer on mammograms. Breast Cancer, 1997, 4, 228-233.	2.9	26
62	<title>Computer-aided detection and diagnosis of masses and clustered microcalcifications from digital mammograms</title> . , 1993, , .		25
63	Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging. Journal of Non-Crystalline Solids, 2006, 352, 610-614.	3.1	25
64	Identification of simulated microcalcifications in white noise and mammographic backgrounds. Medical Physics, 2006, 33, 2905-2911.	3.0	25
65	On the orientation of mammographic structure. Medical Physics, 2011, 38, 5303-5306.	3.0	25
66	Breast MRI contrast enhancement kinetics of normal parenchyma correlate with presence of breast cancer. Breast Cancer Research, 2016, 18, 76.	5.0	25
67	Global detection approach for clustered microcalcifications in mammograms using a deep learning network. Journal of Medical Imaging, 2017, 4, 024501.	1.5	25
68	Assessing the Stand-Alone Sensitivity of Computer-Aided Detection With Cancer Cases From the Digital Mammographic Imaging Screening Trial. American Journal of Roentgenology, 2012, 199, W392-W401.	2.2	24
69	Learning of Perceptual Similarity From Expert Readers for Mammogram Retrieval. IEEE Journal on Selected Topics in Signal Processing, 2009, 3, 53-61.	10.8	23
70	Comparison of Soft-copy and Hard-copy Reading for Full-Field Digital Mammography. Radiology, 2009, 251, 41-49.	7.3	22
71	Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model. Medical Physics, 2015, 43, 159-170.	3.0	22
72	Contrast Enhancement of Hepatic Hemangiomas on Multiphase MDCT: Can We Diagnose Hepatic Hemangiomas by Comparing Enhancement With Blood Pool?. American Journal of Roentgenology, 2010, 195, 381-386.	2.2	21

#	Article	IF	CITATIONS
73	The use ofa prioriinformation in the detection of mammographic microcalcifications to improve their classification. Medical Physics, 2003, 30, 823-831.	3.0	20
74	Clinical use of digital mammography: The present and the prospects. Journal of Digital Imaging, 1995, 8, 74-79.	2.9	19
75	Comparison of eye position versus computer identified microcalcification clusters on mammograms. Medical Physics, 1997, 24, 17-23.	3.0	19
76	A new approach to digital breast tomosynthesis for breast cancer screening. , 2007, , .		18
77	Independent Evaluation of Computer Classification of Malignant and Benign Calcifications in Full-Field Digital Mammograms. Academic Radiology, 2007, 14, 363-370.	2.5	18
78	Computer-aided Detection Evaluation Methods Are Not Created Equal. Radiology, 2009, 251, 634-636.	7.3	17
79	Automated detection of mass lesions in dedicated breast CT: A preliminary study. Medical Physics, 2012, 39, 866-873.	3.0	17
80	Validation of a power-law noise model for simulating small-scale breast tissue. Physics in Medicine and Biology, 2013, 58, 6011-6027.	3.0	17
81	Observers' ability to judge the similarity of clustered calcifications on mammograms. , 2004, , .		17
82	Support vector machine learning for detection of microcalcifications in mammograms. , 0, , .		16
83	High-efficiency white OLEDs based on small molecules. , 2004, 5214, 233.		16
84	Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT. Medical Physics, 2015, 42, 5479-5489.	3.0	16
85	Detection of Microcalcifications. , 2002, , .		15
86	Standardization of NPS measurement: interim report of AAPM TG16. , 2003, , .		15
87	Computer-Aided Screening Mammography. New England Journal of Medicine, 2007, 357, 83-85.	27.0	15
88	Identifying Women With Mammographically- Occult Breast Cancer Leveraging GAN-Simulated Mammograms. IEEE Transactions on Medical Imaging, 2022, 41, 225-236.	8.9	15
89	<title>Method of extracting signal area and signal thickness of microcalcifications from digital mammograms</title> ., 1992,,.		14
90	Clinical experience with an advanced laser digitizer for cost-effective digital radiography Radiographics, 1993, 13, 635-645.	3.3	14

#	Article	IF	CITATIONS
91	Dependence of computer classification of clustered microcalcifications on the correct detection of microcalcifications. Medical Physics, 2001, 28, 1949-1957.	3.0	14
92	Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization. Proceedings of SPIE, 2008, , .	0.8	14
93	<title>Initial experience with a prototype clinical intelligent mammography workstation for computer-aided diagnosis</title> . , 1995, , .		13
94	The effect of x-ray beam alignment on the performance of antiscatter grids. Medical Physics, 1996, 23, 1347-1350.	3.0	13
95	Potential usefulness of digital imaging in clinical diagnostic radiology: Computer-aided diagnosis. Journal of Digital Imaging, 1995, 8, 2-7.	2.9	12
96	Mammographic Databases. Breast Disease, 1998, 10, 137-150.	0.8	12
97	Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer. Medical Physics, 2012, 39, 676-685.	3.0	12
98	<title>Development of a smart workstation for use in mammography</title> ., 1991, 1445, 101.		11
99	Computer-aided detection of clustered microcalcifications. , 0, , .		11
100	Image reconstruction in digital breast tomosynthesis by total variation minimization. , 2007, , .		11
101	Evaluation of a 3D lesion segmentation algorithm on DBT and breast CT images. Proceedings of SPIE, 2010, , .	0.8	11
102	Reduction of false positive detection in clustered microcalcifications. , 2013, , .		11
103	Analysis of perceived similarity between pairs of microcalcification clusters in mammograms. Medical Physics, 2014, 41, 051904.	3.0	11
104	Estimating the Accuracy Level Among Individual Detections in Clustered Microcalcifications. IEEE Transactions on Medical Imaging, 2017, 36, 1162-1171.	8.9	11
105	Cross-Organ, Cross-Modality Transfer Learning: Feasibility Study for Segmentation and Classification. IEEE Access, 2020, 8, 210194-210205.	4.2	11
106	<title>Signal/background separation by wavelet packets for detection of microcalcifications in mammograms</title> . , 1996, , .		10
107	An evaluation criterion for edge detection techniques in noisy images. , 0, , .		10
108	<title>Estimation of three-class ideal observer decision functions with a Bayesian artificial neural network</title> . , 2002, , .		9

7

#	Article	IF	CITATIONS
109	Microcalcification Classification Assisted by Content-Based Image Retrieval for Breast Cancer Diagnosis. , 2007, , .		9
110	Development of an Analytic Breast Phantom for Quantitative Comparison of Reconstruction Algorithms for Digital Breast Tomosynthesis. Lecture Notes in Computer Science, 2006, , 190-196.	1.3	9
111	Computer-aided Detection and Diagnosis. Medical Radiology, 2010, , 85-106.	0.1	9
112	Results of an Observer Study with an Intelligent Mammographic Workstation for CAD. , 2003, , 297-303.		9
113	Virtual Clinical Trials: Why and What (Special Section Guest Editorial). Journal of Medical Imaging, 2020, 7, 1.	1.5	9
114	Development Of A Digital Mammography System. , 1988, , .		8
115	<title>Requirement of microcalcification detection for computerized classification of malignant and benign clustered microcalcifications</title> ., 1998, 3338, 313.		8
116	Investigation of physical image quality indices of a bone densitometry system. Medical Physics, 2004, 31, 873-881.	3.0	8
117	Can radiologists recognize that a computer has identified cancers that they have overlooked?. , 2006, 6146, 614601.		8
118	New Screening Technologies and Practices: A Different Approach to Estimation of Performance Improvement by Using Data from the Transition Period. Radiology, 2015, 275, 9-12.	7.3	8
119	Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography. Medical Physics, 2017, 44, 3726-3738.	3.0	8
120	Anthropomorphic radiologic phantoms Radiology, 1986, 158, 550-552.	7.3	7
121	Slot-Beam Digital Mammography Using A Time-Delay Integration (TDI) CCD. , 1989, , .		7
122	<title>Radiologists' ability to discriminate computer-detected true and false positives from an
automated scheme for the detection of clustered microcalcifications on digital mammograms</title> . , 1997, , .		7
123	A comparison study of image features between FFDM and film mammogram images. Medical Physics, 2012, 39, 4386-4394.	3.0	7
124	Algorithmic scatter correction in dualâ€energy digital mammography. Medical Physics, 2013, 40, 111919.	3.0	7
125	An Anthropomorphic Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom Projections. Lecture Notes in Computer Science, 2010, , 452-458.	1.3	7
126	Detecting mammographically occult cancer in women with dense breasts using deep convolutional neural network and Radon Cumulative Distribution Transform. Journal of Medical Imaging, 2019, 6, 1.	1.5	7

#	Article	IF	CITATIONS
127	Development of a digital duplication system for portable chest radiographs. Journal of Digital Imaging, 1994, 7, 146-153.	2.9	6
128	<title>Front-end data reduction in computer-aided diagnosis of mammograms: a pilot study</title> . , 1999, , .		6
129	A support vector machine approach for detection of microcalcifications in mammograms. , 0, , .		6
130	Optimal reconstruction and quantitative image features for computerâ€∎ided diagnosis tools for breast <scp>CT</scp> . Medical Physics, 2017, 44, 1846-1856.	3.0	6
131	Evaluation of a Computer-Aided Diagnosis System in the Classification of Lesions in Breast Strain Elastography Imaging. Bioengineering, 2018, 5, 62.	3.5	6
132	Gist processing in digital breast tomosynthesis. Journal of Medical Imaging, 2019, 7, 1.	1.5	6
133	Analysis of false-positive microcalcification clusters identified by a mammographic computer-aided detection scheme. Proceedings of SPIE, 1994, , .	0.8	6
134	Detecting mammographically-occult cancer in women with dense breasts using deep convolutional neural network and Radon cumulative distribution transform. , 2019, , .		6
135	<title>Quality Assurance in a National Breast Screening Study</title> ., 1983, , .		5
136	Modelling Of The Spatial-Frequency-Dependent Detective Quantum Efficiency Of X-Ray Image Receptors. , 1988, 0914, 128.		5
137	<title>Design of a common database for research in mammogram image analysis</title> ., 1993, , .		5
138	<title>Characterization of the mammographic appearance of microcalcifications: applications in computer-aided diagnosis</title> . , 1993, 1898, 422.		5
139	<title>Relative gains in diagnostic accuracy between computer-aided diagnosis and independent
double reading</title> . , 2000, 3981, 10.		5
140	<title>Eliminating false-positive microcalcification clusters in a mammography CAD scheme using a
Bayesian neural network</title> . , 2001, , .		5
141	Computerized detection and 3-way classification of breast lesions on ultrasound images. , 2004, , .		5
142	Linkage of the ACR National Mammography Database to the Network of State Cancer Registries: Proof of Concept Evaluation by the ACR National Mammography Database Committee. Journal of the American College of Radiology, 2019, 16, 8-14.	1.8	5
143	Modeling the Effect of Computer-Aided Detection on the Sensitivity of Screening Mammography. Lecture Notes in Computer Science, 2006, , 46-53.	1.3	5
144	TH-D-201B-08: An Anthropomorphic Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom Reconstructions. Medical Physics, 2010, 37, 3473-3473.	3.0	5

#	Article	IF	CITATIONS
145	<title>Reproducibility of an automated scheme for the detection of clustered microcalcifications on digital mammograms</title> . , 1996, , .		4
146	A reconstruction-independent method for computerized mass detection in digital tomosynthesis images of the breast. , 2004, , .		4
147	A relevance vector machine technique for the automatic detection of clustered microcalcifications (Honorable Mention Poster Award). , 2005, , .		4
148	The potential of iodine for improving breast cancer diagnosis and treatment. Medical Hypotheses, 2013, 80, 94-98.	1.5	4
149	An image-retrieval aided diagnosis system for clustered microcalcifications. , 2016, , .		4
150	Prospective Testing of a Clinical Mammography Workstation for CAD: Analysis of the First 10,000 Cases. Computational Imaging and Vision, 1998, , 401-406.	0.6	4
151	Neutrosophic segmentation of breast lesions for dedicated breast computed tomography. Journal of Medical Imaging, 2018, 5, 1.	1.5	4
152	Detecting mammographically occult cancer in women with dense breasts using Radon Cumulative Distribution Transform: a preliminary analysis. , 2018, , .		4
153	Mammographic feature analysis of clustered microcalcifications for classification of breast cancer and benign breast diseases. , 0, , .		3
154	<title>Exploiting context in mammograms: a hierarchical neural network for detecting microcalcifications</title> . , 1996, , .		3
155	<title>Can computer-aided diagnosis (CAD) help radiologists find mammographically missed screening cancers?</title> . , 2001, 4324, 56.		3
156	Differences between mono- and poly-energetic spectra in modeling DQE(f). , 2003, , .		3
157	Developments in OLEDs with a co-dopant system for improved efficiency and stability. , 2004, 5214, 31.		3
158	Hypervolume under the ROC hypersurface of a near-guessing ideal observer in a three-class classification task. , 2004, , .		3
159	A multi-scale 3D radial gradient filter for computerized mass detection in digital tomosynthesis breast images. International Congress Series, 2005, 1281, 1058-1062.	0.2	3
160	Effect of non-isotropic detector blur on microcalcification detectability in tomosynthesis. , 2009, , .		3
161	Scanning translucent glass-ceramic x-ray storage phosphors. Proceedings of SPIE, 2010, 7622, 76223W.	0.8	3
162	Re: Effectiveness of Computer-Aided Detection in Community Mammography Practice. Journal of the National Cancer Institute, 2012, 104, 77-77.	6.3	3

#	Article	IF	CITATIONS
163	Re: Effectiveness of Computer-Aided Detection in Community Mammography Practice. Journal of the National Cancer Institute, 2012, 104, 77-78.	6.3	3
164	Comparison of Computerized Image Analyses for Digitized Screen-Film Mammograms and Full-Field Digital Mammography Images. Lecture Notes in Computer Science, 2006, , 569-575.	1.3	3
165	Effect of Scan Angle and Reconstruction Algorithm on Model Observer Performance in Tomosynthesis. Lecture Notes in Computer Science, 2008, , 606-611.	1.3	3
166	A Directional Small-Scale Tissue Model for an Anthropomorphic Breast Phantom. Lecture Notes in Computer Science, 2012, , 141-148.	1.3	3
167	WEâ€Gâ€207â€05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis. Medical Physics, 2015, 42, 3697-3697.	3.0	3
168	Agreement Between Radiologists' Interpretations of Screening Mammograms. Lecture Notes in Computer Science, 2016, , 3-10.	1.3	3
169	Dr Jiang and colleagues respond. Radiology, 1996, 201, 581-582.	7.3	2
170	<title>Estimation of linear observer templates in the presence of multi-peaked gaussian noise through 2AFC experiments</title> ., 2000,,.		2
171	Hierarchical, multi-resolution models for object recognition: applications to mammographic computer-aided diagnosis. , 0, , .		2
172	<title>Analysis of components of variance in multiple-reader studies of computer-aided diagnosis
with different tasks</title> . , 2001, , .		2
173	<title>Independent versus sequential reading in ROC studies of computer-assist modalities</title> ., 2002,,.		2
174	Bayesian ANN estimates of three-class ideal observer decision variables for classification of mammographic masses. , 2003, 5034, 474.		2
175	Computerized detection of mammographic masses in digital breast tomosynthesis images using radial gradient index filtering. International Congress Series, 2004, 1268, 1352.	0.2	2
176	Special Session on Breast CAD. International Journal of Computer Assisted Radiology and Surgery, 2006, 1, 325-343.	2.8	2
177	Mammogram Retrieval by Similarity Learning from Experts. , 2006, , .		2
178	Development of a model for breast tomosynthesis image acquisition. , 2007, , .		2
179	Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses. Proceedings of SPIE, 2008, , .	0.8	2
180	lssues in characterizing anatomic structure in digital breast tomosynthesis. Proceedings of SPIE, 2011,	0.8	2

#	Article	IF	CITATIONS
181	Regularization in Retrieval-Driven Classification of Clustered Microcalcifications for Breast Cancer. International Journal of Biomedical Imaging, 2012, 2012, 1-8.	3.9	2
182	Computerâ€∎ided detection should be used routinely to assist screening mammogram interpretation. Medical Physics, 2012, 39, 5305-5307.	3.0	2
183	Charles E. Metz, PhD. Academic Radiology, 2012, 19, 1537-1538.	2.5	2
184	Estimating Sensitivity and Specificity for Technology Assessment Based on Observer Studies. Academic Radiology, 2013, 20, 825-830.	2.5	2
185	Using breast radiographers' reports as a second opinion for radiologists' readings of microcalcifications in digital mammography. British Journal of Radiology, 2015, 88, 20140565.	2.2	2
186	Quantitative study of image features of clustered microcalcifications in for-presentation mammograms. , 2016, , .		2
187	Lack of agreement between radiologists: implications for image-based model observers. Journal of Medical Imaging, 2017, 4, 025502.	1.5	2
188	Analyzing GAN artifacts for simulating mammograms: application towards finding mammographically-occult cancer. , 2022, , .		2
189	<title>Preliminary evaluation of an "intelligent" mammography workstation</title> . , 1993, 1898, 764.		1
190	Comparison of rule-based and artificial neural network approaches for improving the automated detection of clustered microcalcifications in mammograms. Proceedings of SPIE, 1995, , .	0.8	1
191	Improving the automated classification of clustered calcifications on mammograms through the improved detection of individual calcifications. , 2002, , .		1
192	Human efficiency in the detection and discrimination tasks. , 2004, , .		1
193	A study of several CAD methods for classification of clustered microcalcifications. , 2005, 5747, 1.		1
194	Human performance for detection and discrimination of simulated microcalcifications in mammographic backgrounds. , 2005, 5749, 223.		1
195	Comparison of Independent Double Readings and Computer-Aided Diagnosis (CAD) for the Diagnosis of Breast Calcifications. Academic Radiology, 2006, 13, 534-535.	2.5	1
196	RETRIEVAL-DRIVEN MICROCALCIFICATION CLASSIFICATION FOR BREAST CANCER DIAGNOSIS. , 2007, , .		1
197	Influence of signal-to-noise ratio and temporal stability on computer-aided detection of mammographic microcalcifications in digitized screen-film and full-field digital mammography. Proceedings of SPIE, 2008, , .	0.8	1
198	Toward validation of a 3D structured background model for breast imaging. Proceedings of SPIE, 2010,	0.8	1

#	Article	IF	CITATIONS
199	Textural feature comparison between FFDM and film mammograms. , 2011, , .		1
200	Image noise sensitivity of dual-energy digital mammography for calcification imaging. , 2011, , .		1
201	Signal-known exactly detection performance in tomosynthesis: does volume visualization help human observers?. Proceedings of SPIE, 2012, , .	0.8	1
202	Overview. Spermatogenesis, 2012, 2, 127-128.	0.8	1
203	Algorithmic scatter correction in dual-energy digital mammography for calcification imaging. , 2012, , \cdot		1
204	Enhancing tissue structures with iterative image reconstruction for digital breast tomosynthesis. Proceedings of SPIE, 2014, , .	0.8	1
205	Can model observers be developed to reproduce radiologists' diagnostic performances? Our study says not so fast!. Proceedings of SPIE, 2016, , .	0.8	1
206	Due to potential concerns of bias and conflicts of interest, regulatory bodies should not do evaluation methodology research related to their regulatory missions. Medical Physics, 2017, 44, 4403-4406.	3.0	1
207	Neutrosophic segmentation of breast lesions for dedicated breast CT. Proceedings of SPIE, 2017, , .	0.8	1
208	Locally adaptive decision in detection of clustered microcalcifications in mammograms. Physics in Medicine and Biology, 2018, 63, 045014.	3.0	1
209	Reducing the effect of false positives in classification of detected clustered microcalcifications. , 2018, , .		1
210	Relationship between computer segmentation performance and computer classification performance in breast CT: A simulation study using RGI segmentation and LDA classification. Medical Physics, 2018, 45, 3650-3656.	3.0	1
211	Proposal of Semi-automatic Classification of Breast Lesions for Strain Sonoelastography Using a Dedicated CAD System. Lecture Notes in Computer Science, 2016, , 454-460.	1.3	1
212	Computerized Mass Detection for Digital Breast Tomosynthesis. , 0, , 409-428.		1
213	The Effect of Scatter Radiation and its Removal on the DQE of Digital Mammography Systems. , 2003, , 59-63.		1
214	Benefits of Computer-Aided Diagnosis (CAD) in Mammographic Diagnosis of Malignant and Benign Clustered Microcalcifications. Computational Imaging and Vision, 1998, , 215-220.	0.6	1
215	Scanned Orojection Digital Mammographic Imaging. Proceedings of SPIE, 1985, , .	0.8	0
216	Comment on "Quantitative classification of breast tumors in digitized mammograms―[Med. Phys. 23 , 1337-1345 (1996)]. Medical Physics, 1997, 24, 313-313.	3.0	0

#	Article	IF	CITATIONS
217	Transferring technology from the intelligence community to the medical community. Journal of Digital Imaging, 1997, 10, 143-143.	2.9	0
218	<title>Radiologists' ability to use computer-aided diagnosis (CAD) to improve breast biopsy recommendations</title> . , 1999, , .		0
219	Automated selection of BI-RADS lesion descriptors for reporting calcifications in mammograms. , 2003, , .		0
220	Effect of radiologists' variability on the performance of computer classification of malignant and benign clustered microcalcifications in mammograms. , 2003, 5034, 42.		0
221	Computer simulation of mammographic imaging for applications in CAD. International Congress Series, 2004, 1268, 890-895.	0.2	0
222	Use of BI-RADS lesion descriptors in computer-aided diagnosis of malignant and benign breast lesions. , 2004, , .		0
223	Relevance vector machine learning for detection of microcalcifications in mammograms. , 2005, , .		0
224	Observer evaluation of a method for producing simulated mammograms. , 2007, , .		0
225	Microcalcification detectability in tomosynthesis. , 2008, , .		Ο
226	Preliminary study on the impact of digital breast tomosynthesis scanning angle on micro-calcification imaging. , 2008, , .		0
227	"Imaging in the age of medical bioinformatics". , 2009, , .		0
228	Rating scales for observer performance studies. , 2010, , .		0
229	A comparison study of textural features between FFDM and film mammogram images. Proceedings of SPIE, 2011, , .	0.8	Ο
230	Fundamental limitations in developing computer-aided detection for mammography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 648, S251-S254.	1.6	0
231	Conventional mammographic image generation in dual-energy digital mammography. , 2013, , .		Ο
232	Fast, robust dynamic field-of-view adjustment for iterative reconstruction of dedicated breast CT. , 2013, , .		0
233	Exploring perceptually similar cases with multi-dimensional scaling. Proceedings of SPIE, 2014, , .	0.8	0
234	Changes in frequency of recall recommendations of examinations depicting cancer with the availability of either priors or digital breast tomosynthesis. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
235	Agreement between a computer-assisted tool and radiologists to classify lesions in breast elastography images. Proceedings of SPIE, 2017, , .	0.8	Ο
236	Limiting Level of False-Positive Detections in Classification of Microcalcification Clusters in Mammograms. , 2019, , .		0
237	Full Field Digital Mammography with a CCD Based Slot-Scanned Detector. Physical Characteristics Measurement. , 2003, , 51-53.		Ο
238	Improved computerized detection of individual microcalcifications to integrate cluster detection and classification schemes. , 2003, , 411-413.		0
239	SU-EE-A2-02: Efficient Automatic Pre-Selection of Mass Lesion Candidates in DBT Breast Volumes. Medical Physics, 2005, 32, 1897-1897.	3.0	0
240	WE-C-330D-02: Image Science and CAD: In Pursuit of a Fundamental Theoretical Basis for CAD Development. Medical Physics, 2006, 33, 2231-2231.	3.0	0
241	THâ€Câ€332â€09: The Effect of Variable Exposure Distribution On Microcalcification Detectability in Tomosynthesis. Medical Physics, 2008, 35, 2978-2978.	3.0	0
242	Stratified Sampling for Case Selection Criteria for Evaluating CAD. Lecture Notes in Computer Science, 2010, , 534-539.	1.3	0
243	Human Observer Performance in a Single Slice or a Volume: Effect of Background Correlation. Lecture Notes in Computer Science, 2010, , 327-333.	1.3	0
244	MO-A-214-01: 3D Breast Models. Medical Physics, 2011, 38, 3706-3706.	3.0	0
245	Methods for Evaluating the Effectiveness of Screening Mammography Are Not Necessarily Valid for Evaluating the Effectiveness of Computer-Aided Detection in Screening Mammography. Lecture Notes in Computer Science, 2012, , 705-712.	1.3	0
246	Estimating Sensitivity and Specificity in an ROC Experiment. Lecture Notes in Computer Science, 2012, , 690-696.	1.3	0
247	TH-E-217BCD-01: Contrast-To-Noise Ratio Is Not an Appropriate Measure of CT Image Quality When Comparing Different Iterative Reconstruction Algorithms. Medical Physics, 2012, 39, 4014-4014.	3.0	0
248	Abstract P1-01-07: Quantitative assessment of early- and delayed DCE-MRI background parenchymal enhancement in breast cancer risk prediction. , 2015, , .		0
249	Developing imaging biomarkers for mammographically-occult cancer in dense breasts using a radiologist's progress rating on cancer development: a preliminary analysis. , 2018, , .		0
250	Oculomotor behaviour of radiologists reading digital breast tomosynthesis (DBT). , 2019, , .		0
251	Special Section Guest Editorial: Evaluation Methodologies for Clinical AI. Journal of Medical Imaging, 2020, 7, 1.	1.5	0
252	The Current Status and Likely Future of Breast Imaging CAD. , 0, , 901-961.		0