Chi-Wang Shu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1302836/chi-wang-shu-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

83 448 40,392 195 h-index g-index citations papers 46,093 2.9 477 7.94 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
448	Efficient Implementation of Weighted ENO Schemes. <i>Journal of Computational Physics</i> , 1996 , 126, 202-	-248	4049
447	Efficient implementation of essentially non-oscillatory shock-capturing schemes. <i>Journal of Computational Physics</i> , 1988 , 77, 439-471	4.1	3245
446	Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. <i>Journal of Computational Physics</i> , 1989 , 83, 32-78	4.1	1947
445	The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. <i>SIAM Journal on Numerical Analysis</i> , 1998 , 35, 2440-2463	2.4	1506
444	The RungeKutta Discontinuous Galerkin Method for Conservation Laws V. <i>Journal of Computational Physics</i> , 1998 , 141, 199-224	4.1	1425
443	Strong Stability-Preserving High-Order Time Discretization Methods. SIAM Review, 2001, 43, 89-112	7.4	1367
442	Total variation diminishing Runge-Kutta schemes. <i>Mathematics of Computation</i> , 1998 , 67, 73-85	1.6	1336
441	TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework. <i>Mathematics of Computation</i> , 1989 , 52, 411	1.6	1188
440	Runge K utta Discontinuous Galerkin Methods for Convection-Dominated Problems. <i>Journal of Scientific Computing</i> , 2001 , 16, 173-261	2.3	1147
439	Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. <i>Journal of Computational Physics</i> , 2000 , 160, 405-452	4.1	1047
438	TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. <i>Journal of Computational Physics</i> , 1989 , 84, 90-113	4.1	946
437	The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional Case. <i>Mathematics of Computation</i> , 1990 , 54, 545	1.6	778
436	Total-Variation-Diminishing Time Discretizations. <i>SIAM Journal on Scientific and Statistical Computing</i> , 1988 , 9, 1073-1084		653
435	Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. <i>Lecture Notes in Mathematics</i> , 1998 , 325-432	0.4	539
434	High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. <i>SIAM Review</i> , 2009 , 51, 82-126	7.4	520
433	Weighted Essentially Non-oscillatory Schemes on Triangular Meshes. <i>Journal of Computational Physics</i> , 1999 , 150, 97-127	4.1	513
432	High-Order Essentially Nonoscillatory Schemes for Hamilton Dacobi Equations. SIAM Journal on Numerical Analysis, 1991, 28, 907-922	2.4	513

431	On the Gibbs Phenomenon and Its Resolution. SIAM Review, 1997, 39, 644-668	7.4	481
430	Runge K utta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. <i>Journal of Computational Physics</i> , 2008 , 227, 4330-4353	4.1	349
429	The Runge-Kutta local projection \$P^1\$-discontinuous-Galerkin finite element method for scalar conservation laws. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 1991 , 25, 337-361	1.8	346
428	On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. <i>Journal of Computational Physics</i> , 2010 , 229, 8918-8934	4.1	309
427	On maximum-principle-satisfying high order schemes for scalar conservation laws. <i>Journal of Computational Physics</i> , 2010 , 229, 3091-3120	4.1	306
426	Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells. <i>Journal of Computational Physics</i> , 2009 , 228, 2194-2212	4.1	259
425	A Technique of Treating Negative Weights in WENO Schemes. <i>Journal of Computational Physics</i> , 2002 , 175, 108-127	4.1	253
424	RungeKutta Discontinuous Galerkin Method Using WENO Limiters. <i>SIAM Journal of Scientific Computing</i> , 2005 , 26, 907-929	2.6	244
423	The Development of Discontinuous Galerkin Methods. <i>Lecture Notes in Computational Science and Engineering</i> , 2000 , 3-50	0.3	238
422	Hermite WENO schemes and their application as limiters for RungeRutta discontinuous Galerkin method: one-dimensional case. <i>Journal of Computational Physics</i> , 2004 , 193, 115-135	4.1	237
421	TVB uniformly high-order schemes for conservation laws. <i>Mathematics of Computation</i> , 1987 , 49, 105-1	05 .6	233
420	High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD. <i>International Journal of Computational Fluid Dynamics</i> , 2003 , 17, 107-118	1.2	232
419	High order finite difference WENO schemes with the exact conservation property for the shallow water equations. <i>Journal of Computational Physics</i> , 2005 , 208, 206-227	4.1	229
418	Hierarchical reconstruction for spectral volume method on unstructured grids. <i>Journal of Computational Physics</i> , 2009 , 228, 5787-5802	4.1	223
417	A Local Discontinuous Galerkin Method for KdV Type Equations. <i>SIAM Journal on Numerical Analysis</i> , 2002 , 40, 769-791	2.4	214
416	High Order Strong Stability Preserving Time Discretizations. <i>Journal of Scientific Computing</i> , 2009 , 38, 251-289	2.3	210
415	Quadrature-Free Implementation of Discontinuous Galerkin Method for Hyperbolic Equations. <i>AIAA Journal</i> , 1998 , 36, 775-782	2.1	204
414	Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. <i>Journal of Computational Physics</i> , 2004 , 194, 588-610	4.1	201

413	Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. <i>Advances in Water Resources</i> , 2010 , 33, 1476-1493	4.7	190
412	Resolution of high order WENO schemes for complicated flow structures. <i>Journal of Computational Physics</i> , 2003 , 186, 690-696	4.1	188
411	Revisiting Hughes Dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. <i>Transportation Research Part B: Methodological</i> , 2009 , 43, 127-141	7.2	184
410	On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. <i>Journal of Computational Physics</i> , 2002 , 183, 187-209	4.1	173
409	Hermite WENO schemes and their application as limiters for Rungekutta discontinuous Galerkin method II: Two dimensional case. <i>Computers and Fluids</i> , 2005 , 34, 642-663	2.8	170
408	Local discontinuous Galerkin methods for nonlinear Schrlinger equations. <i>Journal of Computational Physics</i> , 2005 , 205, 72-97	4.1	167
407	High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. <i>Journal of Computational Physics</i> , 2007 , 226, 29-58	4.1	158
406	Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2011 , 467, 2752-2776	2.4	156
405	High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. <i>Journal of Computational Physics</i> , 2006 , 214, 567-598	4.1	155
404	On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. <i>Journal of Computational and Applied Mathematics</i> , 1992 , 43, 81-98	2.4	155
403	Error Estimates to Smooth Solutions of RungeKutta Discontinuous Galerkin Methods for Scalar Conservation Laws. <i>SIAM Journal on Numerical Analysis</i> , 2004 , 42, 641-666	2.4	132
402	. IEEE Electron Device Letters, 1992 , 13, 26-28	4.4	132
401	A Discontinuous Galerkin Finite Element Method for HamiltonJacobi Equations. <i>SIAM Journal of Scientific Computing</i> , 1999 , 21, 666-690	2.6	129
400	On a cell entropy inequality for discontinuous Galerkin methods. <i>Mathematics of Computation</i> , 1994 , 62, 531-531	1.6	129
399	Numerical experiments on the accuracy of ENO and modified ENO schemes. <i>Journal of Scientific Computing</i> , 1990 , 5, 127-149	2.3	129
398	High-Order WENO Schemes for HamiltonJacobi Equations on Triangular Meshes. <i>SIAM Journal of Scientific Computing</i> , 2003 , 24, 1005-1030	2.6	122
397	Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes. <i>Journal of Scientific Computing</i> , 2012 , 50, 29-62	2.3	121
396	On positivity preserving finite volume schemes for Euler equations. <i>Numerische Mathematik</i> , 1996 , 73, 119-130	2.2	119

(2005-2012)

395	Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. Journal of Computational Physics, 2012 , 231, 2245-2258	4.1	118
394	An efficient class of WENO schemes with adaptive order. <i>Journal of Computational Physics</i> , 2016 , 326, 780-804	4.1	118
393	Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives. <i>Journal of Scientific Computing</i> , 2002 , 17, 27-47	2.3	117
392	A Comparison of Troubled-Cell Indicators for RungeKutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters. <i>SIAM Journal of Scientific Computing</i> , 2005 , 27, 995-1013	2.6	116
391	Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. <i>Journal of Computational Physics</i> , 2011 , 230, 1238-1248	4.1	114
390	Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. <i>Journal of Computational Physics</i> , 2013 , 242, 169-180	4.1	112
389	A simple weighted essentially nonoscillatory limiter for Runge K utta discontinuous Galerkin methods. <i>Journal of Computational Physics</i> , 2013 , 232, 397-415	4.1	112
388	Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations 2011,		108
387	Runge K utta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. <i>Journal of Computational Physics</i> , 2013 , 248, 200-220	4.1	104
386	A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. <i>Journal of Computational Physics</i> , 2007 , 227, 1567-1596	4.1	103
385	A WENO-solver for the transients of BoltzmannPoisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. <i>Journal of Computational Physics</i> , 2003 , 184, 498-525	4.1	101
384	Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. <i>Mathematics of Computation</i> , 2002 , 72, 577-607	1.6	101
383	Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 2008 , 227, 7294-7321	4.1	100
382	A Local Discontinuous Galerkin Method for the Camassa⊞olm Equation. <i>SIAM Journal on Numerical Analysis</i> , 2008 , 46, 1998-2021	2.4	99
381	Local discontinuous Galerkin methods for the CahnHilliard type equations. <i>Journal of Computational Physics</i> , 2007 , 227, 472-491	4.1	99
380	Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. <i>Journal of Computational Physics</i> , 2017 , 345, 427-461	4.1	98
379	Local discontinuous Galerkin methods for nonlinear dispersive equations. <i>Journal of Computational Physics</i> , 2004 , 196, 751-772	4.1	97
378	Anti-diffusive flux corrections for high order finite difference WENO schemes. <i>Journal of Computational Physics</i> , 2005 , 205, 458-485	4.1	96

377	A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows. <i>Journal of Computational Physics</i> , 2000 , 160, 577-596	4.1	95
376	Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. Journal of Computational Physics, 2012 , 231, 653-665	4.1	90
375	Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension. <i>SIAM Journal on Numerical Analysis</i> , 2010 , 47, 4044-4072	2.4	89
374	High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments. <i>Journal of Computational Physics</i> , 2016 , 316, 598-613	4.1	89
373	Nonlinearly Stable Compact Schemes for Shock Calculations. <i>SIAM Journal on Numerical Analysis</i> , 1994 , 31, 607-627	2.4	88
372	High Order ENO and WENO Schemes for Computational Fluid Dynamics. <i>Lecture Notes in Computational Science and Engineering</i> , 1999 , 439-582	0.3	87
371	Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge K utta Discontinuous Galerkin Method for Scalar Conservation Laws. <i>SIAM Journal on Numerical Analysis</i> , 2010 , 48, 1038-1063	2.4	86
370	Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov Poisson system. <i>Journal of Computational Physics</i> , 2011 , 230, 8386-8409	4.1	84
369	A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. <i>Mathematics of Computation</i> , 2007 , 77, 699-731	1.6	84
368	Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction. <i>SIAM Journal on Numerical Analysis</i> , 2007 , 45, 2442-2467	2.4	84
367	Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations. <i>Journal of Scientific Computing</i> , 2005 , 22-23, 413-442	2.3	84
366	Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. <i>Journal of Computational Physics</i> , 2010 , 229, 8144-8166	4.1	83
365	A numerical study for the performance of the Rungekutta discontinuous Galerkin method based on different numerical fluxes. <i>Journal of Computational Physics</i> , 2006 , 212, 540-565	4.1	81
364	Local discontinuous Galerkin methods for the KuramotoBivashinsky equations and the Ito-type coupled KdV equations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 3430-3447	5.7	80
363	AN ANALYSIS OF THREE DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION EQUATIONS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2003 , 13, 395-413	3.5	77
362	Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. <i>Journal of Computational Physics</i> , 2011 , 230, 863-889	4.1	76
361	Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor Green Vortex Flow. <i>Journal of Scientific Computing</i> , 2005 , 24, 1-27	2.3	76
360	Interaction of a shock with a longitudinal vortex. <i>Journal of Fluid Mechanics</i> , 1997 , 337, 129-153	3.7	75

359	The discontinuous Galerkin method with LaxWendroff type time discretizations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2005 , 194, 4528-4543	5.7	74
358	Computational Study of Shock Mitigation and Drag Reduction by Pulsed Energy Lines. <i>AIAA Journal</i> , 2006 , 44, 1720-1731	2.1	73
357	A discontinuous Galerkin finite element method for directly solving the Hamilton Dacobi equations. Journal of Computational Physics, 2007 , 223, 398-415	4.1	72
356	Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems. <i>SIAM Journal on Numerical Analysis</i> , 2015 , 53, 206-227	,2.4	71
355	On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes. <i>Communications in Computational Physics</i> , 2011 , 9, 807-827	2.4	71
354	Finite Difference WENO Schemes with LaxWendroff-Type Time Discretizations. <i>SIAM Journal of Scientific Computing</i> , 2003 , 24, 2185-2198	2.6	71
353	An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. <i>Computers and Fluids</i> , 2005 , 34, 581-592	2.8	71
352	Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection diffusion and KdV equations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2007 , 196, 3805-3822	5.7	70
351	A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. <i>Journal of Computational Physics</i> , 2006 , 212, 739-756	4.1	68
350	Optimal Error Estimates of the Semidiscrete Local Discontinuous Galerkin Methods for High Order Wave Equations. <i>SIAM Journal on Numerical Analysis</i> , 2012 , 50, 79-104	2.4	67
349	Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection diffusion equations on triangular meshes. <i>Journal of Computational Physics</i> , 2013 , 234, 295-3	16 ¹	67
348	A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill Whitham Richards traffic flow model. <i>Journal of Computational Physics</i> , 2003 , 191, 639-659	4.1	67
347	Analysis of Optimal Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations. <i>SIAM Journal on Numerical Analysis</i> , 2012 , 50, 3110-3133	2.4	66
346	Efficient implementation of high order inverse Lax Wendroff boundary treatment for conservation laws. <i>Journal of Computational Physics</i> , 2012 , 231, 2510-2527	4.1	65
345	Dynamic continuum pedestrian flow model with memory effect. <i>Physical Review E</i> , 2009 , 79, 066113	2.4	65
344	Analysis of a Local Discontinuous Galerkin Method for Linear Time-Dependent Fourth-Order Problems. <i>SIAM Journal on Numerical Analysis</i> , 2009 , 47, 3240-3268	2.4	63
343	High order conservative Lagrangian schemes with LaxWendroff type time discretization for the compressible Euler equations. <i>Journal of Computational Physics</i> , 2009 , 228, 8872-8891	4.1	61
342	A Numerical Resolution Study of High Order Essentially Non-oscillatory Schemes Applied to Incompressible Flow. <i>Journal of Computational Physics</i> , 1994 , 110, 39-46	4.1	61

341	Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. <i>Physica D: Nonlinear Phenomena</i> , 2005 , 208, 21-58	3.3	60
340	High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields. <i>Journal of Scientific Computing</i> , 2013 , 54, 645-662	2.3	58
339	A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions. <i>Journal of Scientific Computing</i> , 2007 , 31, 273-305	2.3	58
338	High-order ENO schemes applied to two- and three-dimensional compressible flow. <i>Applied Numerical Mathematics</i> , 1992 , 9, 45-71	2.5	58
337	Geometric Shock-Capturing ENO Schemes for Subpixel Interpolation, Computation and Curve Evolution. <i>Graphical Models</i> , 1997 , 59, 278-301		56
336	L2stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2008 , 42, 593-607	1.8	56
335	Essentially nonoscillatory spectral Fourier methods for shock wave calculations. <i>Mathematics of Computation</i> , 1989 , 52, 389-389	1.6	56
334	Extension of a Post Processing Technique for the Discontinuous Galerkin Method for Hyperbolic Equations with Application to an Aeroacoustic Problem. <i>SIAM Journal of Scientific Computing</i> , 2005 , 26, 821-843	2.6	53
333	Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. <i>Mathematics of Computation</i> , 2015 , 85, 1225-1261	1.6	52
332	On the Gibbs Phenomenon IV: Recovering Exponential Accuracy in a Subinterval from a Gegenbauer Partial Sum of a Piecewise Analytic Function. <i>Mathematics of Computation</i> , 1995 , 64, 1081	1.6	52
331	An Alternative Formulation of Finite Difference Weighted ENO Schemes with LaxWendroff Time Discretization for Conservation Laws. <i>SIAM Journal of Scientific Computing</i> , 2013 , 35, A1137-A1160	2.6	51
330	On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations. <i>Journal of Scientific Computing</i> , 2011 , 48, 339-349	2.3	51
329	A discontinuous Galerkin solver for BoltzmannPoisson systems in nano devices. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2009 , 198, 3130-3150	5.7	51
328	Positivity-preserving Lagrangian scheme for multi-material compressible flow. <i>Journal of Computational Physics</i> , 2014 , 257, 143-168	4.1	50
327	Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces. <i>Journal of Scientific Computing</i> , 2003 , 19, 405-438	2.3	50
326	Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher contributions. <i>Journal of Computational Physics</i> , 2003 , 185, 309-341	4.1	50
325	Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. <i>Journal of Computational Physics</i> , 2014 , 272, 88-107	4.1	48
324	Hermite WENO schemes for Hamilton Dacobi equations. <i>Journal of Computational Physics</i> , 2005 , 204, 82-99	4.1	48

(2013-2012)

323	Superconvergence of Discontinuous Galerkin Methods for Scalar Nonlinear Conservation Laws in One Space Dimension. <i>SIAM Journal on Numerical Analysis</i> , 2012 , 50, 2336-2356	2.4	47	
322	High-order finite volume WENO schemes for the shallow water equations with dry states. <i>Advances in Water Resources</i> , 2011 , 34, 1026-1038	4.7	47	
321	Multistage interaction of a shock wave and a strong vortex. <i>Physics of Fluids</i> , 2005 , 17, 116101	4.4	47	
320	Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers. <i>Physical Review E</i> , 2003 , 68, 046709	2.4	47	
319	On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function. <i>Numerische Mathematik</i> , 1995 , 71, 511-526	2.2	47	
318	High resolution WENO simulation of 3D detonation waves. <i>Combustion and Flame</i> , 2013 , 160, 447-462	5.3	46	
317	Superconvergence and time evolution of discontinuous Galerkin finite element solutions. <i>Journal of Computational Physics</i> , 2008 , 227, 9612-9627	4.1	46	
316	An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. <i>International Journal for Numerical Methods in Engineering</i> , 2008 , 76, 337-350	2.4	45	
315	Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. <i>Lecture Notes in Mathematics</i> , 1998 ,	0.4	45	
314	A reactive dynamic continuum user equilibrium model for bi-directional pedestrian flows. <i>Acta Mathematica Scientia</i> , 2009 , 29, 1541-1555	0.7	44	
313	High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms. <i>Journal of Scientific Computing</i> , 2006 , 27, 477-494	2.3	44	
312	Numerical Comparison of WENO Finite Volume and Runge K utta Discontinuous Galerkin Methods. <i>Journal of Scientific Computing</i> , 2001 , 16, 145-171	2.3	44	
311	On the Gibbs Phenomenon III: Recovering Exponential Accuracy in a Sub-Interval From a Spectral Partial Sum of a Pecewise Analytic Function. <i>SIAM Journal on Numerical Analysis</i> , 1996 , 33, 280-290	2.4	44	
310	High Order Finite Difference WENO Schemes for Nonlinear Degenerate Parabolic Equations. <i>SIAM Journal of Scientific Computing</i> , 2011 , 33, 939-965	2.6	43	
309	2D semiconductor device simulations by WENO-Boltzmann schemes: Efficiency, boundary conditions and comparison to Monte Carlo methods. <i>Journal of Computational Physics</i> , 2006 , 214, 55-80	4.1	43	
308	Efficient time discretization for local discontinuous Galerkin methods. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2007 , 8, 677-693	1.3	43	
307	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. <i>Journal of Computational Physics</i> , 2018 , 375, 659-683	4.1	43	
306	A new class of central compact schemes with spectral-like resolution I: Linear schemes. <i>Journal of Computational Physics</i> , 2013 , 248, 235-256	4.1	42	

305	Discontinuous Galerkin method based on non-polynomial approximation spaces. <i>Journal of Computational Physics</i> , 2006 , 218, 295-323	4.1	42
304	Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation. <i>VLSI Design</i> , 1995 , 3, 145-158		42
303	Discontinuous Galerkin method for hyperbolic equations involving (delta)-singularities: negative-order norm error estimates and applications. <i>Numerische Mathematik</i> , 2013 , 124, 753-781	2.2	41
302	A high order moving boundary treatment for compressible inviscid flows. <i>Journal of Computational Physics</i> , 2011 , 230, 6023-6036	4.1	41
301	Comparison of two formulations for high-order accurate essentially nonoscillatory schemes. <i>AIAA Journal</i> , 1994 , 32, 1970-1977	2.1	41
300	High order finite difference methods with subcell resolution for advection equations with stiff source terms. <i>Journal of Computational Physics</i> , 2012 , 231, 190-214	4.1	40
299	Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation. <i>Communications in Computational Physics</i> , 2011 , 10, 979-1000	2.4	40
298	A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. <i>Journal of Computational Physics</i> , 2010 , 229, 7191-7206	4.1	40
297	A second order discontinuous Galerkin fast sweeping method for Eikonal equations. <i>Journal of Computational Physics</i> , 2008 , 227, 8191-8208	4.1	40
296	Analysis of the discontinuous Galerkin method for HamiltonIIacobi equations. <i>Applied Numerical Mathematics</i> , 2000 , 33, 423-434	2.5	40
295	Superconvergence of Discontinuous Galerkin Methods for Two-Dimensional Hyperbolic Equations. <i>SIAM Journal on Numerical Analysis</i> , 2015 , 53, 1651-1671	2.4	39
294	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter. <i>Communications in Computational Physics</i> , 2016 , 19, 944-969	2.4	39
293	A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes. <i>Journal of Computational Physics</i> , 2015 , 284, 133-154	4.1	38
292	On a One-Sided Post-Processing Technique for the Discontinuous Galerkin Methods. <i>Methods and Applications of Analysis</i> , 2003 , 10, 295-308	0.3	37
291	Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics. <i>Journal of Computational Physics</i> , 2016 , 315, 323-347	4.1	37
290	Energy conserving local discontinuous Galerkin methods for wave propagation problems. <i>Inverse Problems and Imaging</i> , 2013 , 7, 967-986	2.1	35
289	Stability analysis and error estimates of local discontinuous Galerkin methods with implicit time-marching for nonlinear convection diffusion problems. <i>Applied Mathematics and Computation</i> , 2016 , 272, 237-258	2.7	33
288	Discontinuous Galerkin method for Krause\(\bar{8}\) consensus models and pressureless Euler equations. Journal of Computational Physics, 2013, 252, 109-127	4.1	33

287	TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. <i>Mathematics of Computation</i> , 1989 , 52, 411-411	1.6	33	
286	Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2016 , 50, 1083-	1 1 05	33	
285	A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow. <i>Chinese Physics Letters</i> , 2011 , 28, 108901	1.8	32	
284	High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes. <i>Journal of Computational Physics</i> , 2006 , 214, 698-724	4.1	32	
283	Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. <i>Kinetic and Related Models</i> , 2011 , 4, 955-989	2.4	32	
282	Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities. <i>Journal of Computational Physics</i> , 2013 , 241, 266-291	4.1	31	
281	A Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws. <i>SIAM Journal on Numerical Analysis</i> , 2010 , 48, 772-795	2.4	31	
280	Fast Sweeping Fifth Order WENO Scheme for Static Hamilton-Jacobi Equations with Accurate Boundary Treatment. <i>Journal of Scientific Computing</i> , 2010 , 45, 514-536	2.3	31	
279	A Direct Solver for 2D Non-Stationary Boltzmann-Poisson Systems for Semiconductor Devices: A MESFET Simulation by WENO-Boltzmann Schemes. <i>Journal of Computational Electronics</i> , 2003 , 2, 375-3	8ð ^{.8}	31	
278	Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton acobi equations. <i>Applied Mathematics Letters</i> , 2005 , 18, 1204-1209	3.5	31	
277	Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model. <i>Journal of Scientific Computing</i> , 2017 , 73, 943-967	2.3	30	
276	Postprocessing for the Discontinuous Galerkin Method over Nonuniform Meshes. <i>SIAM Journal of Scientific Computing</i> , 2008 , 30, 272-289	2.6	30	
275	Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling. <i>Journal of Scientific Computing</i> , 2005 , 24, 29-44	2.3	30	
274	Numerical study on Landau damping. <i>Physica D: Nonlinear Phenomena</i> , 2001 , 157, 322-333	3.3	30	
273	Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data. <i>Numerische Mathematik</i> , 2014 , 126, 703-740	2.2	29	
272	A minimum entropy principle of high order schemes for gas dynamics equations. <i>Numerische Mathematik</i> , 2012 , 121, 545-563	2.2	29	
271	Optimal non-dissipative discontinuous Galerkin methods for Maxwell® equations in Drude metamaterials. <i>Computers and Mathematics With Applications</i> , 2017 , 73, 1760-1780	2.7	28	
270	Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. <i>Journal of Computational Physics</i> , 2017 , 330, 668-692	4.1	28	

269	Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. <i>Journal of Computational Physics</i> , 2011 , 230, 6843-6865	4.1	28	
268	Device benchmark comparisons via kinetic, hydrodynamic, and high-hield models. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 181, 381-392	5.7	28	
267	Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes, II 1989 , 328-374		28	
266	Local discontinuous Galerkin methods for the generalized Zakharov system. <i>Journal of Computational Physics</i> , 2010 , 229, 1238-1259	4.1	27	
265	Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes. <i>Journal of Computational Physics</i> , 1999 , 148, 59-80	4.1	27	
264	A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws. <i>Journal of Computational Physics</i> , 2013 , 250, 332-346	4.1	26	
263	DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV P OISSON PROBLEM. <i>Mathematical Models and Methods in Applied Sciences</i> , 2012 , 22, 1250042	3.5	26	
262	The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship. <i>Transportation Science</i> , 2009 , 43, 511-530	4.4	26	
261	High order residual distribution conservative finite difference WENO schemes for convectiondiffusion steady state problems on non-smooth meshes. <i>Journal of Computational Physics</i> , 2007 , 224, 992-1020	4.1	26	
260	A note on the accuracy of spectral method applied to nonlinear conservation laws. <i>Journal of Scientific Computing</i> , 1995 , 10, 357-369	2.3	26	
259	Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. <i>Journal of Computational Physics</i> , 2015 , 298, 161-175	4.1	25	
258	A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials. <i>Journal of Computational Physics</i> , 2018 , 352, 76-104	4.1	25	
257	A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws. Journal of Computational Physics, 2017 , 347, 305-327	4.1	25	
256	Superconvergence of local discontinuous Galerkin methods for one-dimensional convection diffusion equations. <i>Computers and Structures</i> , 2009 , 87, 630-641	4.5	25	
255	Approximation of Hyperbolic Models for Chemosensitive Movement. <i>SIAM Journal of Scientific Computing</i> , 2005 , 27, 850-872	2.6	25	
254	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. <i>Journal of Computational Physics</i> , 2019 , 392, 19-33	4.1	24	
253	An interface treating technique for compressible multi-medium flow with RungeRutta discontinuous Galerkin method. <i>Journal of Computational Physics</i> , 2010 , 229, 8823-8843	4.1	24	
252	Resolution properties of the Fourier method for discontinuous waves. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1994 , 116, 27-37	5.7	24	

251	On One-Sided Filters for Spectral Fourier Approximations of Discontinuous Functions. <i>SIAM Journal on Numerical Analysis</i> , 1992 , 29, 905-916	2.4	24	
250	Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. <i>Journal of Computational Physics</i> , 2018 , 354, 163-178	4.1	24	
249	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes. <i>Communications in Computational Physics</i> , 2017 , 21, 623-649	2.4	23	
248	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case. <i>Journal of Computational Physics</i> , 2016 , 312, 416-442	4.1	23	
247	Revisiting Jiang dynamic continuum model for urban cities. <i>Transportation Research Part B: Methodological</i> , 2013 , 56, 96-119	7.2	23	
246	Improvement of Convergence to Steady State Solutions of Euler Equations with the WENO Schemes. <i>Journal of Scientific Computing</i> , 2011 , 47, 216-238	2.3	23	
245	An Eulerian Approach for Vortex Motion Using a Level Set Regularization Procedure. <i>Journal of Computational Physics</i> , 1996 , 127, 15-26	4.1	23	
244	Inverse Lax Wendroff procedure for numerical boundary conditions of convection diffusion equations. <i>Journal of Computational Physics</i> , 2016 , 317, 276-300	4.1	23	
243	On the positivity of linear weights in WENO approximations. <i>Acta Mathematicae Applicatae Sinica</i> , 2009 , 25, 503-538	0.3	22	
242	A high order accurate conservative remapping method on staggered meshes. <i>Applied Numerical Mathematics</i> , 2008 , 58, 1042-1060	2.5	22	
241	A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting. <i>Journal of Computational Physics</i> , 1992 , 100, 424-429	4.1	22	
240	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case. <i>Journal of Computational Physics</i> , 2016 , 312, 385-415	4.1	21	
239	Central local discontinuous galerkin methods on overlapping cells for diffusion equations. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2011 , 45, 1009-1032	1.8	21	
238	Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2011 , 200, 2814-2827	5.7	21	
237	Explicit construction of entropy solutions for the Lighthill Whitham Richards traffic flow model with a piecewise quadratic flow density relationship. <i>Transportation Research Part B:</i> Methodological, 2008, 42, 355-372	7.2	21	
236	Computational macroscopic approximations to the one-dimensional relaxation-time kinetic system for semiconductors. <i>Physica D: Nonlinear Phenomena</i> , 2000 , 146, 289-306	3.3	21	
235	Free-stream preserving finite difference schemes on curvilinear meshes. <i>Methods and Applications of Analysis</i> , 2014 , 21, 1-30	0.3	21	
234	Superconvergence of Discontinuous Galerkin Method for Scalar Nonlinear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2018 , 56, 732-765	2.4	20	

233	Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations. <i>SIAM Journal of Scientific Computing</i> , 2011 , 33, 1873-1896	2.6	20
232	High-order well-balanced schemes and applications to non-equilibrium flow. <i>Journal of Computational Physics</i> , 2009 , 228, 6682-6702	4.1	20
231	Uniform High-Order Spectral Methods for One- and Two-Dimensional Euler Equations. <i>Journal of Computational Physics</i> , 1993 , 104, 427-443	4.1	20
230	TVB boundary treatment for numerical solutions of conservation laws. <i>Mathematics of Computation</i> , 1987 , 49, 123-123	1.6	20
229	Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. <i>Science China Mathematics</i> , 2016 , 59, 115-140	0.8	19
228	Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations. <i>SIAM Journal of Scientific Computing</i> , 2012 , 34, A627-A658	2.6	19
227	Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation. <i>Communications in Computational Physics</i> , 2011 , 10, 474-508	2.4	19
226	Convergence of Godunov-Type Schemes for Scalar Conservation Laws under Large Time Steps. <i>SIAM Journal on Numerical Analysis</i> , 2008 , 46, 2211-2237	2.4	19
225	Low-redshift cosmic baryon fluid on large scales and She-Leveque universal scaling. <i>Physical Review Letters</i> , 2006 , 96, 051302	7.4	19
224	TURBULENCE IN THE INTERGALACTIC MEDIUM: SOLENOIDAL AND DILATATIONAL MOTIONS AND THE IMPACT OF NUMERICAL VISCOSITY. <i>Astrophysical Journal</i> , 2013 , 777, 48	4.7	18
223	Local discontinuous Galerkin methods for moment models in device simulations: Performance assessment and two-dimensional results. <i>Applied Numerical Mathematics</i> , 2007 , 57, 629-645	2.5	18
222	The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. <i>Mathematics of Computation</i> , 1990 , 54, 545-545	1.6	18
221	Energy Models for One-Carrier Transport in Semiconductor Devices. <i>The IMA Volumes in Mathematics and Its Applications</i> , 1994 , 185-207	0.5	18
220	Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes. <i>Numerische Mathematik</i> , 2019 , 142, 995-1047	2.2	17
219	Discontinuous Galerkin Method for Time-Dependent Problems: Survey and Recent Developments. <i>The IMA Volumes in Mathematics and Its Applications</i> , 2014 , 25-62	0.5	17
218	High-Order Computational Scheme for a Dynamic Continuum Model for Bi-Directional Pedestrian Flows. <i>Computer-Aided Civil and Infrastructure Engineering</i> , 2011 , 26, 298-310	8.4	17
217	Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes. <i>Communications in Computational Physics</i> , 2012 , 11, 1144-1168	2.4	17
216	Third order implicitexplicit Rungekutta local discontinuous Galerkin methods with suitable boundary treatment for convection diffusion problems with Dirichlet boundary conditions. <i>Journal of Computational and Applied Mathematics</i> , 2018 , 342, 164-179	2.4	17

215	Finite difference Hermite WENO schemes for the Hamilton Lacobi equations. <i>Journal of Computational Physics</i> , 2017 , 337, 27-41	4.1	16	
214	A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework. <i>Applied Numerical Mathematics</i> , 2015 , 95, 173-198	2.5	16	
213	Unconditional Energy Stability Analysis of a Second Order Implicit E xplicit Local Discontinuous Galerkin Method for the CahnHilliard Equation. <i>Journal of Scientific Computing</i> , 2017 , 73, 1178-1203	2.3	16	
212	Development and stability analysis of the inverse LaxWendroff boundary treatment for central compact schemes. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2015 , 49, 39-67	1.8	16	
211	A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations. <i>Bolet</i> Do De La Sociedad Espa De Matem Dica Aplicada, 2011 , 54, 47-64		16	
210	Discontinuous Galerkin solver for Boltzmann-Poisson transients. <i>Journal of Computational Electronics</i> , 2008 , 7, 119-123	1.8	16	
209	The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems. <i>Multiscale Modeling and Simulation</i> , 2005 , 3, 871-894	1.8	16	
208	Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems. Journal of Scientific Computing, 2006 , 28, 307-318	2.3	16	
207	Local Discontinuous Galerkin Methods for Moment Models in Device Simulations: Formulation and One Dimensional Results. <i>Journal of Computational Electronics</i> , 2004 , 3, 263-267	1.8	16	
206	. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1995 , 14, 917-923	2.5	16	
205	Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations 1996 ,		16	
204	HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS. Lecture Notes Series, Institute for Mathematical Sciences, 2007, 47-91	0.1	16	
203	Bound-preserving modified exponential Runge Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. <i>Journal of Computational Physics</i> , 2018 , 361, 111-135	4.1	15	
202	Stability analysis of the inverse LaxWendroff boundary treatment for high order upwind-biased finite difference schemes. <i>Journal of Computational and Applied Mathematics</i> , 2016 , 299, 140-158	2.4	15	
201	Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. <i>Journal of Computational Physics</i> , 2017 , 349, 80-96	4.1	15	
200	Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates. <i>Journal of Computational Physics</i> , 2014 , 272, 245-	2 8 5	15	
199	Local Discontinuous Galerkin Method for Surface Diffusion and Willmore Flow of Graphs. <i>Journal of Scientific Computing</i> , 2009 , 40, 375-390	2.3	15	
198	High-order essentially non-oscillatory scheme for viscoelasticity with fading memory. <i>Quarterly of Applied Mathematics</i> , 1997 , 55, 459-484	0.7	15	

197	A WENO-Solver for the 1D Non-Stationary Boltzmann Poisson System for Semiconductor Devices. Journal of Computational Electronics, 2002, 1, 365-370	1.8	15
196	A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr D ebye model. <i>Mathematical Models and Methods in Applied Sciences</i> , 2017 , 27, 549-579	3.5	14
195	High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study. <i>Communications in Computational Physics</i> , 2016 , 20, 835-869	2.4	14
194	A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework on unstructured meshes. <i>Applied Numerical Mathematics</i> , 2015 , 90, 14	·6 - 21-57	14
193	The mechanism of sound generation in the interaction between a shock wave and two counter-rotating vortices. <i>Physics of Fluids</i> , 2009 , 21, 076101	4.4	14
192	The WKB Local Discontinuous Galerkin Method for the Simulation of Schrdinger Equation in a Resonant Tunneling Diode. <i>Journal of Scientific Computing</i> , 2009 , 40, 360-374	2.3	14
191	A High Order WENO Scheme for a Hierarchical Size-Structured Population Model. <i>Journal of Scientific Computing</i> , 2007 , 33, 279-291	2.3	14
190	Stability of the fourth order Runge K utta method for time-dependent partial differential equations. <i>Annals of Mathematical Sciences and Applications</i> , 2017 , 2, 255-284	1.3	14
189	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. <i>Journal of Computational Physics</i> , 2020 , 404, 109105	4.1	14
188	A Provably Positive Discontinuous Galerkin Method for Multidimensional Ideal Magnetohydrodynamics. <i>SIAM Journal of Scientific Computing</i> , 2018 , 40, B1302-B1329	2.6	14
187	Strong Stability of Explicit RungeKutta Time Discretizations. <i>SIAM Journal on Numerical Analysis</i> , 2019 , 57, 1158-1182	2.4	13
186	High Order Finite Difference Methods with Subcell Resolution for Stiff Multispecies Discontinuity Capturing. <i>Communications in Computational Physics</i> , 2015 , 17, 317-336	2.4	13
185	Implicit Positivity-Preserving High-Order Discontinuous Galerkin Methods for Conservation Laws. <i>SIAM Journal of Scientific Computing</i> , 2018 , 40, A81-A107	2.6	13
184	Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows. Journal of Computational Physics, 2011 , 230, 4316-4335	4.1	13
183	Effects of shock waves on Rayleigh-Taylor instability. <i>Physics of Plasmas</i> , 2006 , 13, 062705	2.1	13
182	Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. <i>Physics of Fluids</i> , 2006 , 18, 126101	4.4	13
181	A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. Journal of Computational Physics, 2020 , 406, 109212	4.1	13
180	Positivity-Preserving Time Discretizations for Production Destruction Equations with Applications to Non-equilibrium Flows. <i>Journal of Scientific Computing</i> , 2019 , 78, 1811-1839	2.3	13

179	Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2017 , 51, 2213-	1.8 2235	12
178	A priorierror estimates to smooth solutions of the third order Runge R utta discontinuous Galerkin method for symmetrizable systems of conservation laws. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2015 , 49, 991-1018	1.8	12
177	WENO Scheme with Subcell Resolution for Computing Nonconservative Euler Equations with Applications to One-Dimensional Compressible Two-Medium Flows. <i>Journal of Scientific Computing</i> , 2012 , 53, 222-247	2.3	12
176	A Conservative Modification to the Ghost Fluid Method for Compressible Multiphase Flows. <i>Communications in Computational Physics</i> , 2011 , 10, 785-806	2.4	12
175	Numerical simulations of compressible mixing layers with a discontinuous Galerkin method. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2011 , 27, 318-329	2	12
174	Local Discontinuous Galerkin Method for the HunterBaxton Equation and Its Zero-Viscosity and Zero-Dispersion Limits. <i>SIAM Journal of Scientific Computing</i> , 2009 , 31, 1249-1268	2.6	12
173	Convergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws. <i>SIAM Journal of Scientific Computing</i> , 2008 , 31, 584-607	2.6	12
172	A WENO algorithm of the temperature and ionization profiles around a point source. <i>New Astronomy</i> , 2007 , 12, 398-409	1.8	12
171	A discontinuous Galerkin implementation of a domain decomposition method for kinetic-hydrodynamic coupling multiscale problems in gas dynamics and device simulations. <i>Journal of Computational Physics</i> , 2007 , 225, 1314-1330	4.1	12
170	Essentially non-oscillatory and weighted essentially non-oscillatory schemes. <i>Acta Numerica</i> , 2020 , 29, 701-762	15.1	12
169	RESONANT SCATTERING AND LyRADIATION EMERGENT FROM NEUTRAL HYDROGEN HALOS. <i>Astrophysical Journal</i> , 2010 , 716, 604-614	4.7	11
168	Topological structure of shock induced vortex breakdown. <i>Journal of Fluid Mechanics</i> , 2009 , 639, 343-37	3 .7	11
167	Post-Processing of Galerkin Methods for Hyperbolic Problems. <i>Lecture Notes in Computational Science and Engineering</i> , 2000 , 291-300	0.3	11
166	High Order Positivity-Preserving Discontinuous Galerkin Methods for Radiative Transfer Equations. <i>SIAM Journal of Scientific Computing</i> , 2016 , 38, A2987-A3019	2.6	11
165	Three-dimensional ghost-fluid large-scale numerical investigation on air explosion. <i>Computers and Fluids</i> , 2016 , 137, 70-79	2.8	11
164	Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. <i>Science China Mathematics</i> , 2020 , 63, 183-204	0.8	11
163	A WENO algorithm for radiative transfer with resonant scattering and the Wouthuysen Eield coupling. <i>New Astronomy</i> , 2009 , 14, 513-520	1.8	10
162	TIME EVOLUTION OF WOUTHUYSEN-FIELD COUPLING. <i>Astrophysical Journal</i> , 2009 , 694, 1121-1130	4.7	10

161	A WENO algorithm for the growth of ionized regions at the reionization epoch. <i>New Astronomy</i> , 2008 , 13, 1-11	1.8	10
160	Entropy Symmetrization and High-Order Accurate Entropy Stable Numerical Schemes for Relativistic MHD Equations. <i>SIAM Journal of Scientific Computing</i> , 2020 , 42, A2230-A2261	2.6	10
159	Implicit E xplicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection D iffusion Problems. <i>Journal of Scientific Computing</i> , 2019 , 81, 2080-2114	2.3	10
158	Discontinuous Galerkin methods for Maxwell equations in Drude metamaterials on unstructured meshes. <i>Journal of Computational and Applied Mathematics</i> , 2018 , 342, 147-163	2.4	9
157	A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. <i>Advances in Aerodynamics</i> , 2019 , 1,	2.2	9
156	Stability Analysis of the Inverse LaxWendroff Boundary Treatment for High Order Central Difference Schemes for Diffusion Equations. <i>Journal of Scientific Computing</i> , 2017 , 70, 576-607	2.3	9
155	Classification and sound generation of two-dimensional interaction of two Taylor vortices. <i>Physics of Fluids</i> , 2013 , 25, 056103	4.4	9
154	Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation. <i>Communications in Computational Physics</i> , 2011 , 10, 474-508	2.4	9
153	Preface to the Republication of Uniformly High Order Essentially Non-oscillatory Schemes, III, Lby Harten, Engquist, Osher, and Chakravarthy. <i>Journal of Computational Physics</i> , 1997 , 131, 1-2	4.1	9
152	Discontinuous Galerkin method for a class of elliptic multi-scale problems. <i>International Journal for Numerical Methods in Fluids</i> , 2008 , 56, 1017-1032	1.9	9
151	On local conservation of numerical methods for conservation laws. <i>Computers and Fluids</i> , 2018 , 169, 3-9	2.8	8
150	The L\$^2\$-norm Stability Analysis of RungeKutta Discontinuous Galerkin Methods for Linear Hyperbolic Equations. <i>SIAM Journal on Numerical Analysis</i> , 2019 , 57, 1574-1601	2.4	8
149	Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws. <i>Numerical Methods for Partial Differential Equations</i> , 2017 , 33, 467-488	2.5	8
148	A discontinuous Galerkin scheme for front propagation with obstacles. <i>Numerische Mathematik</i> , 2014 , 126, 1-31	2.2	8
147	High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model. <i>Journal of Computational and Applied Mathematics</i> , 2011 , 236, 937-949	2.4	8
146	Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation laws. <i>Nonlinearity</i> , 2009 , 22, 2799-2812	1.7	8
145	A Third-Order Unconditionally Positivity-Preserving Scheme for Production Destruction Equations with Applications to Non-equilibrium Flows. <i>Journal of Scientific Computing</i> , 2019 , 79, 1015-1056	2.3	8
144	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes. <i>Applied Numerical Mathematics</i> , 2020 , 153, 519-539	2.5	8

(2004-2018)

143	Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. <i>Mathematics of Computation</i> , 2018 , 88, 91-121	1.6	8	
142	A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2017 , 318, 456-	473	7	
141	Reformulating the Hoogendoorn B ovy predictive dynamic user-optimal model in continuum space with anisotropic condition. <i>Transportation Research Part B: Methodological</i> , 2015 , 79, 189-217	7.2	7	
140	Well-Balanced Finite-Volume Schemes for Hydrodynamic Equations with General Free Energy. <i>Multiscale Modeling and Simulation</i> , 2020 , 18, 502-541	1.8	7	
139	Multi-scale Discontinuous Galerkin Method for Solving Elliptic Problems with Curvilinear Unidirectional Rough Coefficients. <i>Journal of Scientific Computing</i> , 2014 , 61, 42-60	2.3	7	
138	Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. <i>Science China Mathematics</i> , 2010 , 53, 3255-3278	0.8	7	
137	The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids. <i>Multiscale Modeling and Simulation</i> , 2008 , 7, 294-320	1.8	7	
136	WOUTHUYSEN-FIELD COUPLING IN THE 21 cm REGION AROUND HIGH-REDSHIFT SOURCES. Astrophysical Journal, 2009, 703, 1992-2003	4.7	7	
135	Analysis of the discontinuous Galerkin method applied to the diffusion operator 1999,		7	
134	A Discontinuous Galerkin Method for Stochastic Conservation Laws. <i>SIAM Journal of Scientific Computing</i> , 2020 , 42, A54-A86	2.6	7	
133	Discontinuous Galerkin Methods for Time-Dependent Convection Dominated Problems: Basics, Recent Developments and Comparison with Other Methods. <i>Lecture Notes in Computational Science and Engineering</i> , 2016 , 371-399	0.3	7	
132	A New Multiscale Discontinuous Galerkin Method for the One-Dimensional Stationary Schrüinger Equation. <i>Journal of Scientific Computing</i> , 2016 , 66, 321-345	2.3	6	
131	Stability analysis and error estimates of arbitrary Lagrangian Eulerian discontinuous Galerkin method coupled with Runge Kutta time-marching for linear conservation laws. <i>ESAIM:</i> Mathematical Modelling and Numerical Analysis, 2019, 53, 105-144	1.8	6	
130	Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2017 , 51, 1931-1955	1.8	6	
129	THE ANGULAR DISTRIBUTION OF LyRESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM. <i>Astrophysical Journal</i> , 2013 , 772, 3	4.7	6	
128	DSMC versus WENO-BTE: A double gate MOSFET example. <i>Journal of Computational Electronics</i> , 2007 , 5, 471-474	1.8	6	
127	Modeling, numerical methods, and simulation for particle-fluid two-phase flow problems. <i>Computers and Mathematics With Applications</i> , 2004 , 47, 1437-1462	2.7	6	
126	The Dynamics of a Plane Diode. SIAM Journal on Mathematical Analysis, 2004, 35, 1617-1635	1.7	6	

125	The Response of the Hydrodynamic Model to Heat Conduction, Mobility, and Relaxation Expressions. <i>VLSI Design</i> , 1995 , 3, 131-143		6
124	An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. <i>Kinetic and Related Models</i> , 2019 , 12, 885-908	2.4	6
123	Anti-diffusive High Order WENO Schemes for Hamilton-Jacobi Equations. <i>Methods and Applications of Analysis</i> , 2005 , 12, 169-190	0.3	6
122	Modeling and simulation of urban air pollution from the dispersion of vehicle exhaust: A continuum modeling approach. <i>International Journal of Sustainable Transportation</i> , 2019 , 13, 722-740	3.6	6
121	Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: a Numerical Study. <i>Communications on Applied Mathematics and Computation</i> , 2020 , 2, 429-46	o ^{0.9}	6
120	Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin schemes: Triangular elements. <i>Journal of Computational Physics</i> , 2019 , 395, 461-488	4.1	5
119	Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems. <i>Journal of Computational Physics</i> , 2019 , 394, 329-363	4.1	5
118	On New Strategies to Control the Accuracy of WENO Algorithms Close to Discontinuities. <i>SIAM Journal on Numerical Analysis</i> , 2019 , 57, 1205-1237	2.4	5
117	High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates. <i>Mathematical Models and Methods in Applied Sciences</i> , 2015 , 25, 1553-1588	3.5	5
116	On a new WENO algorithm of order 2r with improved accuracy close to discontinuities. <i>Applied Mathematics Letters</i> , 2020 , 105, 106298	3.5	5
115	Optimal Error Estimates of the Semidiscrete Central Discontinuous Galerkin Methods for Linear Hyperbolic Equations. <i>SIAM Journal on Numerical Analysis</i> , 2018 , 56, 520-541	2.4	5
114	Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes. <i>Acta Mathematicae Applicatae Sinica</i> , 2013 , 29, 449-464	0.3	5
113	Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates. <i>Computers and Fluids</i> , 2017 , 157, 112-130	2.8	5
112	A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations. <i>Communications in Computational Physics</i> , 2012 , 12, 1307-1328	2.4	5
111	On high-order accurate weighted essentially non-oscillatory and discontinuous Galerkin schemes for compressible turbulence simulations. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120172	3	5
110	A Discontinuous Galerkin Solver for Front Propagation. <i>SIAM Journal of Scientific Computing</i> , 2011 , 33, 923-938	2.6	5
109	EFFECT OF DUST ON LyIPHOTON TRANSFER IN AN OPTICALLY THICK HALO. <i>Astrophysical Journal</i> , 2011 , 739, 91	4.7	5
108	A Discontinuous Galerkin Solver for Full-Band Boltzmann-Poisson Models 2009 ,		5

107	Numerical Solutions of Partial Differential Equations 2009 ,		5	
106	Numerical solution of a virtual internal bond model for material fracture. <i>Physica D: Nonlinear Phenomena</i> , 2002 , 167, 101-121	3.3	5	
105	On the Conservation and Convergence to Weak Solutions of Global Schemes. <i>Journal of Scientific Computing</i> , 2003 , 18, 111-132	2.3	5	
104	Analysis of the relativistic Vlasov-Maxwell model in an interval. <i>Quarterly of Applied Mathematics</i> , 2005 , 63, 691-714	0.7	5	
103	Simulating Quasi-ballistic Transport in Si Nanotransistors. VLSI Design, 2001, 13, 5-13		5	
102	Applicability of the High Field Model: A Preliminary Numerical Study. VLSI Design, 1998, 8, 275-282		5	
101	On the Gibbs phenomenon. IV. Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function. <i>Mathematics of Computation</i> , 1995 , 64, 1081-	1081	5	
100	Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations. <i>AIAA Journal</i> , 1998 , 36, 775-782	2.1	5	
99	Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations. <i>Numerische Mathematik</i> , 2021 , 148, 699-741	2.2	5	
98	H(div) conforming and DG methods for incompressible Euler equations. <i>IMA Journal of Numerical Analysis</i> , 2016 , drw054	1.8	5	
97	Inverse Lax Wendroff Procedure for Numerical Boundary Conditions of Hyperbolic Equations: Survey and New Developments. <i>Fields Institute Communications</i> , 2013 , 41-63	0.4	5	
96	Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations. <i>Communications on Applied Mathematics and Computation</i> , 2019 , 1, 101-116	0.9	4	
95	A shock-fitting algorithm for the Lighthill Whitham Richards model on inhomogeneous highways. <i>Transportmetrica</i> , 2011 , 7, 163-180		4	
94	Simulating quasi-ballistic transport in Si nanotransistors		4	
93	Essentially Nonoscillatory Spectral Fourier Method for Shocks Wave Calculations. <i>Mathematics of Computation</i> , 1989 , 52, 389	1.6	4	
92	An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. <i>Mathematics of Computation</i> , 2020 , 89, 2753-2783	1.6	4	
91	Superconvergence Analysis of the RungeRutta Discontinuous Galerkin Methods for a Linear Hyperbolic Equation. <i>Journal of Scientific Computing</i> , 2020 , 84, 1	2.3	4	
90	Error Estimate of the Fourth-Order RungeKutta Discontinuous Galerkin Methods for Linear Hyperbolic Equations. <i>SIAM Journal on Numerical Analysis</i> , 2020 , 58, 2885-2914	2.4	4	

89	High order finite difference hermite WENO schemes for the Hamilton Dacobi equations on unstructured meshes. <i>Computers and Fluids</i> , 2019 , 183, 53-65	2.8	4
88	An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Kortewegde Vries equation. <i>Journal of Computational and Applied Mathematics</i> , 2019 , 349, 41-51	2.4	4
87	Weighted ghost fluid discontinuous Galerkin method for two-medium problems. <i>Journal of Computational Physics</i> , 2021 , 426, 109956	4.1	4
86	An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary. <i>Journal of Computational Physics</i> , 2021 , 426, 109940	4.1	4
85	A high order positivity-preserving conservative WENO remapping method on 2D quadrilateral meshes. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2021 , 373, 113497	5.7	4
84	A local discontinuous Galerkin method for nonlinear parabolic SPDEs. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2021 , 55, S187-S223	1.8	4
83	On a class of splines free of Gibbs phenomenon. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2021 , 55, S29-S64	1.8	4
82	Comparison of Monte Carlo and Deterministic Simulations of a Silicon Diode. <i>The IMA Volumes in Mathematics and Its Applications</i> , 2004 , 75-84	0.5	4
81	On the conservation of finite difference WENO schemes in non-rectangular domains using the inverse Lax-Wendroff boundary treatments. <i>Journal of Computational Physics</i> , 2020 , 415, 109516	4.1	3
80	Recovering exponential accuracy from collocation point values of smooth functions with end-point singularities. <i>Journal of Computational and Applied Mathematics</i> , 2014 , 265, 83-95	2.4	3
79	Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates. <i>Science China Mathematics</i> , 2013 , 56, 2645-2676	0.8	3
78	Stability analysis and error estimates of LaxWendroff discontinuous Galerkin methods for linear conservation laws. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2017 , 51, 1063-1087	1.8	3
77	Fourier analysis for discontinuous Galerkin and related methods. <i>Science Bulletin</i> , 2009 , 54, 1809-1816	10.6	3
76	A Lagrangian scheme with the preservation of symmetry and conservation in cylindrical geometry: Preliminary study. <i>Procedia Computer Science</i> , 2010 , 1, 1903-1911	1.6	3
75	Efficient implementation of the shock-fitting algorithm for the LighthillWhithamRichards traffic flow model. <i>International Journal for Numerical Methods in Engineering</i> , 2008 , 74, 554-600	2.4	3
74	Analysis of preconditioning and relaxation operators for the discontinuous Galerkin method applied to diffusion 2001 ,		3
73	Applicability of the High Field Model: An Analytical Study Via Asymptotic Parameters Defining Domain Decomposition. <i>VLSI Design</i> , 1998 , 8, 135-141		3
72	A comparison of two formulations for high-order accurate essentiallynon-oscillatory schemes 1993,		3

71	Approximation of the BTE by a Relaxation-time Operator: Simulations for a 50 nm-channel Si Diode. <i>VLSI Design</i> , 2001 , 13, 349-354		3	
70	Bound-Preserving High-Order Schemes for Hyperbolic Equations: Survey and Recent Developments. <i>Springer Proceedings in Mathematics and Statistics</i> , 2018 , 591-603	0.2	3	
69	A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations. Journal of Scientific Computing, 2017 , 73, 1028-1071	2.3	2	
68	Bound-Preserving High Order Finite Volume Schemes for Conservation Laws and Convection-Diffusion Equations. <i>Springer Proceedings in Mathematics and Statistics</i> , 2017 , 3-14	0.2	2	
67	Preface to the Focused Issue on Fractional Derivatives and General Nonlocal Models. <i>Communications on Applied Mathematics and Computation</i> , 2019 , 1, 503-504	0.9	2	
66	Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise. <i>Journal of Scientific Computing</i> , 2019 , 81, 1210-1239	2.3	2	
65	Recovering Exponential Accuracy in Fourier Spectral Methods Involving Piecewise Smooth Functions with Unbounded Derivative Singularities. <i>Journal of Scientific Computing</i> , 2015 , 65, 1145-1165	5 ^{2.3}	2	
64	An Ultra-Weak Discontinuous Galerkin Method with Implicit E xplicit Time-Marching for Generalized Stochastic KdV Equations. <i>Journal of Scientific Computing</i> , 2020 , 82, 1	2.3	2	
63	Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using Pk elements. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2020 , 54, 705-726	1.8	2	
62	Conservative High Order Positivity-Preserving Discontinuous Galerkin Methods for Linear Hyperbolic and Radiative Transfer Equations. <i>Journal of Scientific Computing</i> , 2018 , 77, 1801-1831	2.3	2	
61	Assessment of aeroacoustic resolution properties of DG schemes and comparison with DRP schemes. <i>Journal of Computational Physics</i> , 2019 , 399, 108960	4.1	2	
60	Convergence of discontinuous Galerkin schemes for front propagation with obstacles. <i>Mathematics of Computation</i> , 2015 , 85, 2131-2159	1.6	2	
59	Discontinuous Galerkin methods for the Boltzmann-Poisson systems in semiconductor device simulations 2011 ,		2	
58	Analysis and Simulation of Extended Hydrodynamic Models: The Multi-Valley Gunn Oscillator and MESFET Symmetries. <i>VLSI Design</i> , 1998 , 6, 277-282		2	
57	A New WENO-2\$r\$ Algorithm with Progressive Order of Accuracy Close to Discontinuities. <i>SIAM Journal on Numerical Analysis</i> , 2020 , 58, 3448-3474	2.4	2	
56	Discontinuous Galerkin Solver for the Semiconductor Boltzmann Equation 2007 , 257-260		2	
55	The Effect of the Least Square Procedure for Discontinuous Galerkin Methods for Hamilton-Jacobi Equations. <i>Lecture Notes in Computational Science and Engineering</i> , 2000 , 343-348	0.3	2	
54	Survey on discontinuous Galerkin methods for Hamilton-Jacobi equations. <i>Contemporary Mathematics</i> , 2013 , 323-330	1.6	2	

53	Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2020 , 54, 1797-1820	1.8	2
52	High order conservative Lagrangian schemes for one-dimensional radiation hydrodynamics equations in the equilibrium-diffusion limit. <i>Journal of Computational Physics</i> , 2020 , 421, 109724	4.1	2
51	A Sequel of Inverse Lax Wendroff High Order Wall Boundary Treatment for Conservation Laws. <i>Archives of Computational Methods in Engineering</i> , 2021 , 28, 2315-2329	7.8	2
50	An Oscillation-free Discontinuous Galerkin Method for Scalar Hyperbolic Conservation Laws. <i>SIAM Journal on Numerical Analysis</i> , 2021 , 59, 1299-1324	2.4	2
49	High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems. <i>Applied Numerical Mathematics</i> , 2021 , 165, 482-499	2.5	2
48	A high order conservative finite difference scheme for compressible two-medium flows. <i>Journal of Computational Physics</i> , 2021 , 445, 110597	4.1	2
47	Stability analysis of inverse Lax Wendroff boundary treatment of high order compact difference schemes for parabolic equations. <i>Journal of Computational and Applied Mathematics</i> , 2022 , 400, 113711	2.4	2
46	Discontinuous Galerkin deterministic solvers for a Boltzmann P oisson model of hot electron transport by averaged empirical pseudopotential band structures. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2017 , 321, 209-234	5.7	1
45	On the time growth of the error of the DG method for advective problems. <i>IMA Journal of Numerical Analysis</i> , 2019 , 39, 687-712	1.8	1
44	Foreword by the Editor-in-Chief. Communications on Applied Mathematics and Computation, 2019, 1, 1-1	0.9	1
43	On moving mesh WENO schemes with characteristic boundary conditions for Hamilton-Jacobi equations. <i>Computers and Fluids</i> , 2020 , 205, 104582	2.8	1
42	High Order and High Resolution Numerical Schemes for Computational Aeroacoustics and Their Applications. <i>Lecture Notes in Mechanical Engineering</i> , 2016 , 27-32	0.4	1
41	Runge-Kutta and Lax-Wendroff discontinuous Galerkin methods for linear conservation laws 2017,		1
40	Numerical Solution of the Viscous Surface Wave with Discontinuous Galerkin Method. <i>ESAIM:</i> Mathematical Modelling and Numerical Analysis, 2015 , 49, 1019-1046	1.8	1
39	Discontinuous Galerkin Methods 2010 ,		1
38	High order entropy stable and positivity-preserving discontinuous Galerkin method for the nonlocal electron heat transport model. <i>Journal of Computational Physics</i> , 2022 , 454, 110945	4.1	1
37	High-Resolution Viscous Terms Discretization and ILW Solid Wall Boundary Treatment for the NavierBtokes Equations. <i>Archives of Computational Methods in Engineering</i> ,1	7.8	1
36	An Overview on High Order Numerical Methods for Convection Dominated PDEs 2003 , 79-88		1

35	Third and Fourth Order Weighted ENO Schemes for Hamilton-Jacobi Equations on 2D Unstructured Meshes 2003 , 941-950		1
34	A Numerical Example on the Performance of High Order Discontinuous Galerkin Method for 2D Incompressible Flows. <i>Lecture Notes in Computational Science and Engineering</i> , 2000 , 369-374	0.3	1
33	Energy transport systems for semiconductors: Analysis and simulation 1996 , 3835-3846		1
32	A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 386, 113230	2.4	1
31	Multi-symplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise. <i>Journal of Computational Physics</i> , 2022 , 461, 111199	4.1	1
30	Existence and Computation of Solutions of a Model of Traffic Involving Hysteresis. <i>SIAM Journal on Applied Mathematics</i> , 2020 , 80, 2319-2337	1.8	O
29	An Essentially Oscillation-Free Discontinuous Galerkin Method for Hyperbolic Systems. <i>SIAM Journal of Scientific Computing</i> , 2022 , 44, A230-A259	2.6	0
28	Multi-layer Perceptron Estimator for the Total Variation Bounded Constant in Limiters for Discontinuous Galerkin Methods. <i>La Matematica</i> ,1		O
27	Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity. <i>Communications on Applied Mathematics and Computation</i> ,1	0.9	0
26	A High Order Stable Conservative Method for Solving Hyperbolic Conservation Laws on Arbitrarily Distributed Point Clouds. <i>SIAM Journal of Scientific Computing</i> , 2016 , 38, A3094-A3128	2.6	O
25	Discontinuous Galerkin methods for a kinetic model of self-organized dynamics. <i>Mathematical Models and Methods in Applied Sciences</i> , 2018 , 28, 1171-1197	3.5	0
24	Cell-average WENO with progressive order of accuracy close to discontinuities with applications to signal processing. <i>Applied Mathematics and Computation</i> , 2021 , 403, 126131	2.7	O
23	Multi-resolution HWENO schemes for hyperbolic conservation laws. <i>Journal of Computational Physics</i> , 2021 , 446, 110653	4.1	0
22	A high order positivity-preserving conservative WENO remapping method on 3D tetrahedral meshes. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2022 , 395, 115037	5.7	O
21	Discontinuous Galerkin Methods for Weakly Coupled Hyperbolic MultiDomain Problems. <i>SIAM Journal of Scientific Computing</i> , 2017 , 39, A2201-A2230	2.6	
20	Preface to the Focused Issue in Honor of Professor Philip Roe on the Occasion of His 80th Birthday. <i>Communications on Applied Mathematics and Computation</i> , 2020 , 2, 319-320	0.9	
19	Reprint of: Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates. <i>Computers and Fluids</i> , 2018 , 169, 230-248	2.8	
18	Numerical solutions of stochastic PDEs driven by arbitrary type of noise. <i>Stochastics and Partial Differential Equations: Analysis and Computations</i> , 2019 , 7, 1-39	0.9	

17	Recent developments on the Lagrangian and remapping methods for compressible fluid flows 2012 , 9-19	
16	Resolution of high order WENO schemes and Navier-Stokes simulation of the Rayleigh-Taylor instability problem 2003 , 1216-1218	
15	Preface to Focused Issue on Discontinuous Galerkin Methods. <i>Communications on Applied Mathematics and Computation</i> ,1	0.9
14	The Utility of Modeling and Simulation in Determining Transport Performance Properties of Semiconductors. <i>Lecture Notes in Computational Science and Engineering</i> , 2000 , 147-156	0.3
13	Discontinuous Galerkin methods for equations with divergence-free solutions 2003 , 1900-1902	
12	INTERGALACTIC MEDIUM IN THE ACDM UNIVERSE FROM COSMOLOGICAL SIMULATIONS. <i>Journal of the Korean Astronomical Society</i> , 2005 , 38, 129-133	
11	High Order Accurate Modern Numerical Methods Applicable to Stellar Pulsations 1990 , 263-267	
10	Essentially Nonoscillatory Spectral Fourier Methods for Shock Wave Calculations 1997 , 375-396	
9	Exponential Scaling and the Time Growth of the Error of DG for Advection-Reaction Problems. <i>Lecture Notes in Computational Science and Engineering</i> , 2019 , 963-971	0.3
8	Completed repeated Richardson extrapolation for compressible fluid flows. <i>Applied Mathematical Modelling</i> , 2020 , 77, 724-737	4.5
7	Central discontinuous Galerkin methods on overlapping meshes for wave equations. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i> , 2021 , 55, 329-356	1.8
6	A Foreword to the Special Issue in Honor of Professor Bernardo Cockburn on His 60th Birthday: A Life Time of Discontinuous Schemings. <i>Journal of Scientific Computing</i> , 2018 , 77, 1303-1309	2.3
5	Preface to Focused Section on Efficient High-Order Time Discretization Methods for Partial Differential Equations. <i>Communications on Applied Mathematics and Computation</i> ,1	0.9
4	Local discontinuous Galerkin methods for the carpet cloak model. <i>Annals of Mathematical Sciences and Applications</i> , 2022 , 7, 97-137	1.3
3	Preface to the Focused Issue on WENO Schemes. <i>Communications on Applied Mathematics and Computation</i> ,1	0.9
2	High-resolution ILW outflow boundary treatment for the NavierBtokes equations. <i>Computers and Fluids</i> , 2022 , 105506	2.8
1	Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. <i>Journal of Computational Physics</i> , 2022 , 464, 111314	4.1