Chi-Wang Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302836/publications.pdf

Version: 2024-02-01

461 papers

52,419 citations

91 h-index

3325

220 g-index

477 all docs

477 docs citations

times ranked

477

9533 citing authors

#	Article	IF	CITATIONS
1	Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 1996, 126, 202-228.	1.9	5,195
2	Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 1988, 77, 439-471.	1.9	3,905
3	Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. Journal of Computational Physics, 1989, 83, 32-78.	1.9	2,675
4	The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM Journal on Numerical Analysis, 1998, 35, 2440-2463.	1.1	1,854
5	Strong Stability-Preserving High-Order Time Discretization Methods. SIAM Review, 2001, 43, 89-112.	4.2	1,817
6	Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 1998, 67, 73-85.	1.1	1,803
7	The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V. Journal of Computational Physics, 1998, 141, 199-224.	1.9	1,787
8	Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems. Journal of Scientific Computing, 2001, 16, 173-261.	1.1	1,395
9	TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework. Mathematics of Computation, 1989, 52, 411.	1.1	1,364
10	Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 2000, 160, 405-452.	1.9	1,311
11	TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. Journal of Computational Physics, 1989, 84, 90-113.	1.9	1,152
12	The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional Case. Mathematics of Computation, 1990, 54, 545.	1.1	914
13	Total-Variation-Diminishing Time Discretizations. SIAM Journal on Scientific and Statistical Computing, 1988, 9, 1073-1084.	1.5	837
14	Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Lecture Notes in Mathematics, 1998, , 325-432.	0.1	803
15	High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM Review, 2009, 51, 82-126.	4.2	677
16	Weighted Essentially Non-oscillatory Schemes on Triangular Meshes. Journal of Computational Physics, 1999, 150, 97-127.	1.9	641
17	High-Order Essentially Nonoscillatory Schemes for Hamilton–Jacobi Equations. SIAM Journal on Numerical Analysis, 1991, 28, 907-922.	1.1	615
18	On the Gibbs Phenomenon and Its Resolution. SIAM Review, 1997, 39, 644-668.	4.2	603

#	Article	IF	CITATIONS
19	On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. Journal of Computational Physics, 2010, 229, 8918-8934.	1.9	463
20	The Runge-Kutta local projection \$P^1\$-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 1991, 25, 337-361.	0.8	429
21	Runge–Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. Journal of Computational Physics, 2008, 227, 4330-4353.	1.9	426
22	On maximum-principle-satisfying high order schemes for scalar conservation laws. Journal of Computational Physics, 2010, 229, 3091-3120.	1.9	417
23	The Development of Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, 2000, , 3-50.	0.1	381
24	Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters. SIAM Journal of Scientific Computing, 2005, 26, 907-929.	1.3	326
25	High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD. International Journal of Computational Fluid Dynamics, 2003, 17, 107-118.	0.5	325
26	Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells. Journal of Computational Physics, 2009, 228, 2194-2212.	1.9	320
27	A Technique of Treating Negative Weights in WENO Schemes. Journal of Computational Physics, 2002, 175, 108-127.	1.9	318
28	Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. Journal of Computational Physics, 2004, 193, 115-135.	1.9	317
29	TVB uniformly high-order schemes for conservation laws. Mathematics of Computation, 1987, 49, 105-121.	1.1	302
30	High order finite difference WENO schemes with the exact conservation property for the shallow water equations. Journal of Computational Physics, 2005, 208, 206-227.	1.9	281
31	Hierarchical reconstruction for spectral volume method on unstructured grids. Journal of Computational Physics, 2009, 228, 5787-5802.	1.9	279
32	A Local Discontinuous Galerkin Method for KdV Type Equations. SIAM Journal on Numerical Analysis, 2002, 40, 769-791.	1.1	272
33	High Order Strong Stability Preserving Time Discretizations. Journal of Scientific Computing, 2009, 38, 251-289.	1.1	266
34	Quadrature-Free Implementation of Discontinuous Galerkin Method for Hyperbolic Equations. AIAA Journal, 1998, 36, 775-782.	1.5	259
35	Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Advances in Water Resources, 2010, 33, 1476-1493.	1.7	252
36	Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological, 2009, 43, 127-141.	2.8	241

#	Article	IF	Citations
37	Resolution of high order WENO schemes for complicated flow structures. Journal of Computational Physics, 2003, 186, 690-696.	1.9	236
38	TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation, 1989, 52, 411-435.	1.1	232
39	Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics, 2004, 194, 588-610.	1.9	230
40	On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 2002, 183, 187-209.	1.9	217
41	Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: Two dimensional case. Computers and Fluids, 2005, 34, 642-663.	1.3	216
42	High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physics, 2006, 214, 567-598.	1.9	210
43	Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 2752-2776.	1.0	205
44	High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. Journal of Computational Physics, 2007, 226, 29-58.	1.9	202
45	Local discontinuous Galerkin methods for nonlinear SchrĶdinger equations. Journal of Computational Physics, 2005, 205, 72-97.	1.9	201
46	On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. Journal of Computational and Applied Mathematics, 1992, 43, 81-98.	1.1	189
47	On positivity preserving finite volume schemes for Euler equations. Numerische Mathematik, 1996, 73, 119-130.	0.9	180
48	An efficient class of WENO schemes with adaptive order. Journal of Computational Physics, 2016, 326, 780-804.	1.9	180
49	Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes forÂConservation Laws on Triangular Meshes. Journal of Scientific Computing, 2012, 50, 29-62.	1.1	169
50	Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. Journal of Computational Physics, 2012, 231, 2245-2258.	1.9	168
51	The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Mathematics of Computation, 1990, 54, 545-581.	1.1	163
52	Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. Journal of Computational Physics, 2013, 242, 169-180.	1.9	163
53	An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electron Device Letters, 1992, 13, 26-28.	2.2	161
54	Error Estimates to Smooth Solutions of Runge–Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws. SIAM Journal on Numerical Analysis, 2004, 42, 641-666.	1.1	161

#	Article	IF	Citations
55	Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. Journal of Computational Physics, 2011, 230, 1238-1248.	1.9	158
56	A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations. SIAM Journal of Scientific Computing, 1999, 21, 666-690.	1.3	157
57	A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. Journal of Computational Physics, 2013, 232, 397-415.	1.9	157
58	Numerical experiments on the accuracy of ENO and modified ENO schemes. Journal of Scientific Computing, 1990, 5, 127-149.	1.1	154
59	A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters. SIAM Journal of Scientific Computing, 2005, 27, 995-1013.	1.3	153
60	Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. Journal of Computational Physics, 2017, 345, 427-461.	1.9	153
61	On a cell entropy inequality for discontinuous Galerkin methods. Mathematics of Computation, 1994, 62, 531-538.	1.1	147
62	High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes. SIAM Journal of Scientific Computing, 2003, 24, 1005-1030.	1.3	147
63	Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 2008, 227, 7294-7321.	1.9	139
64	Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. Journal of Computational Physics, 2013, 248, 200-220.	1.9	139
65	Title is missing!. Journal of Scientific Computing, 2002, 17, 27-47.	1.1	135
66	Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. Journal of Computational Physics, 2012, 231, 653-665.	1.9	133
67	Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Mathematics of Computation, 2002, 72, 577-607.	1.1	131
68	High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments. Journal of Computational Physics, 2016, 316, 598-613.	1.9	129
69	High Order ENO and WENO Schemes for Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, 1999, , 439-582.	0.1	126
70	Anti-diffusive flux corrections for high order finite difference WENO schemes. Journal of Computational Physics, 2005, 205, 458-485.	1.9	122
71	A Local Discontinuous Galerkin Method for the Camassa–Holm Equation. SIAM Journal on Numerical Analysis, 2008, 46, 1998-2021.	1.1	122
72	A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. Journal of Computational Physics, 2003, 184, 498-525.	1.9	120

#	Article	IF	CITATIONS
73	A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. Journal of Computational Physics, 2007, 227, 1567-1596.	1.9	120
74	A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Mathematics of Computation, 2007, 77, 699-731.	1.1	116
75	Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. Journal of Computational Physics, 2007, 227, 472-491.	1.9	116
76	Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations. Journal of Scientific Computing, 2005, 22-23, 413-442.	1.1	113
77	Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov–Poisson system. Journal of Computational Physics, 2011, 230, 8386-8409.	1.9	113
78	A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows. Journal of Computational Physics, 2000, 160, 577-596.	1.9	111
79	Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension. SIAM Journal on Numerical Analysis, 2010, 47, 4044-4072.	1.1	111
80	Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3430-3447.	3.4	109
81	Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge–Kutta Discontinuous Galerkin Method for Scalar Conservation Laws. SIAM Journal on Numerical Analysis, 2010, 48, 1038-1063.	1.1	109
82	Local discontinuous Galerkin methods for nonlinear dispersive equations. Journal of Computational Physics, 2004, 196, 751-772.	1.9	107
83	Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. Journal of Computational Physics, 2010, 229, 8144-8166.	1.9	106
84	Nonlinearly Stable Compact Schemes for Shock Calculations. SIAM Journal on Numerical Analysis, 1994, 31, 607-627.	1.1	104
85	Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems. SIAM Journal on Numerical Analysis, 2015, 53, 206-227.	1.1	101
86	Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow. Journal of Scientific Computing, 2005, 24, 1-27.	1.1	100
87	A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. Journal of Computational Physics, 2006, 212, 540-565.	1.9	98
88	Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction. SIAM Journal on Numerical Analysis, 2007, 45, 2442-2467.	1.1	97
89	Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 3805-3822.	3.4	96
90	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. Journal of Computational Physics, 2018, 375, 659-683.	1.9	96

#	Article	IF	Citations
91	AN ANALYSIS OF THREE DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION EQUATIONS. Mathematical Models and Methods in Applied Sciences, 2003, 13, 395-413.	1.7	95
92	Interaction of a shock with a longitudinal vortex. Journal of Fluid Mechanics, 1997, 337, 129-153.	1.4	94
93	The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Computer Methods in Applied Mechanics and Engineering, 2005, 194, 4528-4543.	3.4	92
94	Finite Difference WENO Schemes with LaxWendroff-Type Time Discretizations. SIAM Journal of Scientific Computing, 2003, 24, 2185-2198.	1.3	90
95	On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes. Communications in Computational Physics, 2011, 9, 807-827.	0.7	90
96	Computational Study of Shock Mitigation and Drag Reduction by Pulsed Energy Lines. AIAA Journal, 2006, 44, 1720-1731.	1.5	89
97	Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. Journal of Computational Physics, 2013, 234, 295-316.	1.9	89
98	Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. Journal of Computational Physics, 2011, 230, 863-889.	1.9	88
99	Analysis of a Local Discontinuous Galerkin Method for Linear Time-Dependent Fourth-Order Problems. SIAM Journal on Numerical Analysis, 2009, 47, 3240-3268.	1.1	86
100	Efficient implementation of high order inverse Lax–Wendroff boundary treatment for conservation laws. Journal of Computational Physics, 2012, 231, 2510-2527.	1.9	85
101	A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. Journal of Computational Physics, 2007, 223, 398-415.	1.9	83
102	Analysis of Optimal Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2012, 50, 3110-3133.	1.1	83
103	A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill倓Whitham倓Richards traffic flow model. Journal of Computational Physics, 2003, 191, 639-659.	1.9	82
104	A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions. Journal of Scientific Computing, 2007, 31, 273-305.	1.1	82
105	High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields. Journal of Scientific Computing, 2013, 54, 645-662.	1.1	81
106	An Alternative Formulation of Finite Difference Weighted ENO Schemes with LaxWendroff Time Discretization for Conservation Laws. SIAM Journal of Scientific Computing, 2013, 35, A1137-A1160.	1.3	80
107	An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Computers and Fluids, 2005, 34, 581-592.	1.3	79
108	Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Physica D: Nonlinear Phenomena, 2005, 208, 21-58.	1.3	78

#	Article	IF	CITATIONS
109	Optimal Error Estimates of the Semidiscrete Local Discontinuous Galerkin Methods for High Order Wave Equations. SIAM Journal on Numerical Analysis, 2012, 50, 79-104.	1.1	78
110	A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. Journal of Computational Physics, 2006, 212, 739-756.	1.9	76
111	High Order Finite Difference WENO Schemes for Nonlinear Degenerate Parabolic Equations. SIAM Journal of Scientific Computing, 2011, 33, 939-965.	1.3	7 5
112	Positivity-preserving Lagrangian scheme for multi-material compressible flow. Journal of Computational Physics, 2014, 257, 143-168.	1.9	75
113	Dynamic continuum pedestrian flow model with memory effect. Physical Review E, 2009, 79, 066113.	0.8	74
114	Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Mathematics of Computation, 2015, 85, 1225-1261.	1.1	72
115	Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numerica, 2020, 29, 701-762.	6.3	72
116	A Numerical Resolution Study of High Order Essentially Non-oscillatory Schemes Applied to Incompressible Flow. Journal of Computational Physics, 1994, 110, 39-46.	1.9	71
117	High-order ENO schemes applied to two- and three-dimensional compressible flow. Applied Numerical Mathematics, 1992, 9, 45-71.	1.2	70
118	On the Advantage of Well-Balanced Schemes forÂMoving-Water Equilibria of the Shallow Water Equations. Journal of Scientific Computing, 2011, 48, 339-349.	1.1	70
119	On the Gibbs Phenomenon IV: Recovering Exponential Accuracy in a Subinterval from a Gegenbauer Partial Sum of a Piecewise Analytic Function. Mathematics of Computation, 1995, 64, 1081.	1.1	69
120	High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. Journal of Computational Physics, 2009, 228, 8872-8891.	1.9	66
121	Geometric Shock-Capturing ENO Schemes for Subpixel Interpolation, Computation and Curve Evolution. Graphical Models, 1997, 59, 278-301.	1.4	65
122	Hermite WENO schemes for Hamilton–Jacobi equations. Journal of Computational Physics, 2005, 204, 82-99.	1.9	64
123	Multistage interaction of a shock wave and a strong vortex. Physics of Fluids, 2005, 17, 116101.	1.6	64
124	<i>L</i> ² stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 593-607.	0.8	64
125	High-order finite volume WENO schemes for the shallow water equations with dry states. Advances in Water Resources, 2011, 34, 1026-1038.	1.7	64
126	A discontinuous Galerkin solver for Boltzmann–Poisson systems in nano devices. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 3130-3150.	3.4	62

#	Article	IF	CITATIONS
127	Extension of a Post Processing Technique for the Discontinuous Galerkin Method for Hyperbolic Equations with Application to an Aeroacoustic Problem. SIAM Journal of Scientific Computing, 2005, 26, 821-843.	1.3	61
128	Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces. Journal of Scientific Computing, 2003, 19, 405-438.	1.1	60
129	Essentially nonoscillatory spectral Fourier methods for shock wave calculations. Mathematics of Computation, 1989, 52, 389-410.	1.1	59
130	High resolution WENO simulation of 3D detonation waves. Combustion and Flame, 2013, 160, 447-462.	2.8	59
131	Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. Journal of Computational Physics, 2014, 272, 88-107.	1.9	59
132	On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function. Numerische Mathematik, 1995, 71, 511-526.	0.9	58
133	Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers. Physical Review E, 2003, 68, 046709.	0.8	58
134	Discontinuous Galerkin method based on non-polynomial approximation spaces. Journal of Computational Physics, 2006, 218, 295-323.	1.9	58
135	High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms. Journal of Scientific Computing, 2006, 27, 477-494.	1.1	57
136	On the Gibbs Phenomenon III: Recovering Exponential Accuracy in a Sub-Interval From a Spectral Partial Sum of a Pecewise Analytic Function. SIAM Journal on Numerical Analysis, 1996, 33, 280-290.	1.1	56
137	Superconvergence and time evolution of discontinuous Galerkin finite element solutions. Journal of Computational Physics, 2008, 227, 9612-9627.	1.9	56
138	A new class of central compact schemes with spectral-like resolution I: Linear schemes. Journal of Computational Physics, 2013, 248, 235-256.	1.9	56
139	Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions. Journal of Computational Physics, 2003, 185, 309-341.	1.9	55
140	Superconvergence of Discontinuous Galerkin Methods for Scalar Nonlinear Conservation Laws in One Space Dimension. SIAM Journal on Numerical Analysis, 2012, 50, 2336-2356.	1.1	55
141	A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes. Journal of Computational Physics, 2015, 284, 133-154.	1.9	54
142	An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. International Journal for Numerical Methods in Engineering, 2008, 76, 337-350.	1.5	51
143	A high order moving boundary treatment for compressible inviscid flows. Journal of Computational Physics, 2011, 230, 6023-6036.	1.9	51
144	Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation. VLSI Design, 1995, 3, 145-158.	0.5	50

#	Article	IF	Citations
145	A reactive dynamic continuum user equilibrium model for bi-directional pedestrian flows. Acta Mathematica Scientia, 2009, 29, 1541-1555.	0.5	50
146	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter. Communications in Computational Physics, 2016, 19, 944-969.	0.7	50
147	Numerical Comparison of WENO Finite Volume and Runge–Kutta Discontinuous Galerkin Methods. Journal of Scientific Computing, 2001, 16, 145-171.	1.1	49
148	Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - Series B, 2007, 8, 677-693.	0.5	49
149	2D semiconductor device simulations by WENO-Boltzmann schemes: Efficiency, boundary conditions and comparison to Monte Carlo methods. Journal of Computational Physics, 2006, 214, 55-80.	1.9	48
150	Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation. Communications in Computational Physics, 2011, 10, 979-1000.	0.7	48
151	High order finite difference methods with subcell resolution for advection equations with stiff source terms. Journal of Computational Physics, 2012, 231, 190-214.	1.9	48
152	Discontinuous Galerkin method for hyperbolic equations involving \$\$delta \$\$ -singularities: negative-order norm error estimates and applications. Numerische Mathematik, 2013, 124, 753-781.	0.9	48
153	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. Journal of Computational Physics, 2019, 392, 19-33.	1.9	48
154	A second order discontinuous Galerkin fast sweeping method for Eikonal equations. Journal of Computational Physics, 2008, 227, 8191-8208.	1.9	47
155	Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics. Journal of Computational Physics, 2016, 315, 323-347.	1.9	47
156	Analysis of the discontinuous Galerkin method for Hamilton–Jacobi equations. Applied Numerical Mathematics, 2000, 33, 423-434.	1.2	46
157	Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling. Journal of Scientific Computing, 2005, 24, 29-44.	1.1	46
158	Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, 50, 1083-1105.	0.8	46
159	Comparison of two formulations for high-order accurate essentially nonoscillatory schemes. AIAA Journal, 1994, 32, 1970-1977.	1.5	45
160	A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. Journal of Computational Physics, 2010, 229, 7191-7206.	1.9	45
161	Superconvergence of Discontinuous Galerkin Methods for Two-Dimensional Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2015, 53, 1651-1671.	1.1	45
162	On a One-Sided Post-Processing Technique for the Discontinuous Galerkin Methods. Methods and Applications of Analysis, 2003, 10, 295-308.	0.1	45

#	Article	IF	Citations
163	Discontinuous Galerkin method for Krause $\hat{E}\frac{1}{4}$ s consensus models and pressureless Euler equations. Journal of Computational Physics, 2013, 252, 109-127.	1.9	44
164	Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Applied Mathematics and Computation, 2016, 272, 237-258.	1.4	44
165	Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes, II., 1989, , 328-374.		44
166	A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws. Journal of Computational Physics, 2017, 347, 305-327.	1.9	43
167	Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems and Imaging, 2013, 7, 967-986.	0.6	43
168	Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton–Jacobi equations. Applied Mathematics Letters, 2005, 18, 1204-1209.	1.5	42
169	Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. Journal of Computational Physics, 2018, 354, 163-178.	1.9	42
170	Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model. Journal of Scientific Computing, 2017, 73, 943-967.	1.1	41
171	Fast Sweeping Fifth Order WENO Scheme for Static Hamilton-Jacobi Equations with Accurate Boundary Treatment. Journal of Scientific Computing, 2010, 45, 514-536.	1.1	40
172	A minimum entropy principle of high order schemes for gas dynamics equations. Numerische Mathematik, 2012, 121, 545-563.	0.9	40
173	Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials. Computers and Mathematics With Applications, 2017, 73, 1760-1780.	1.4	40
174	Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes. Numerische Mathematik, 2019, 142, 995-1047.	0.9	40
175	Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4, 955-989.	0.5	40
176	A Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws. SIAM Journal on Numerical Analysis, 2010, 48, 772-795.	1.1	39
177	A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials. Journal of Computational Physics, 2018, 352, 76-104.	1.9	39
178	A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow. Chinese Physics Letters, 2011, 28, 108901.	1.3	38
179	Numerical study on Landau damping. Physica D: Nonlinear Phenomena, 2001, 157, 322-333.	1.3	37
180	A Direct Solver for 2D Non-Stationary Boltzmann-Poisson Systems for Semiconductor Devices: A MESFET Simulation by WENO-Boltzmann Schemes. Journal of Computational Electronics, 2003, 2, 375-380.	1.3	36

#	Article	IF	Citations
181	High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes. Journal of Computational Physics, 2006, 214, 698-724.	1.9	36
182	Resolution properties of the Fourier method for discontinuous waves. Computer Methods in Applied Mechanics and Engineering, 1994, 116, 27-37.	3.4	35
183	Approximation of Hyperbolic Models for Chemosensitive Movement. SIAM Journal of Scientific Computing, 2005, 27, 850-872.	1.3	35
184	Local discontinuous Galerkin methods for the generalized Zakharov system. Journal of Computational Physics, 2010, 229, 1238-1259.	1.9	35
185	Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. Journal of Computational Physics, 2011, 230, 6843-6865.	1.9	35
186	Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities. Journal of Computational Physics, 2013, 241, 266-291.	1.9	35
187	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes. Communications in Computational Physics, 2017, 21, 623-649.	0.7	35
188	Free-stream preserving finite difference schemes on curvilinear meshes. Methods and Applications of Analysis, 2014, 21, 1-30.	0.1	35
189	Device benchmark comparisons via kinetic, hydrodynamic, and high-hield models. Computer Methods in Applied Mechanics and Engineering, 2000, 181, 381-392.	3.4	34
190	High order residual distribution conservative finite difference WENO schemes for convection–diffusion steady state problems on non-smooth meshes. Journal of Computational Physics, 2007, 224, 992-1020.	1.9	34
191	Postprocessing for the Discontinuous Galerkin Method over Nonuniform Meshes. SIAM Journal of Scientific Computing, 2008, 30, 272-289.	1.3	34
192	Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. Journal of Computational Physics, 2015, 298, 161-175.	1.9	34
193	Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. Journal of Computational Physics, 2017, 330, 668-692.	1.9	34
194	Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes. Journal of Computational Physics, 1999, 148, 59-80.	1.9	33
195	Revisiting Jiang's dynamic continuum model for urban cities. Transportation Research Part B: Methodological, 2013, 56, 96-119.	2.8	33
196	Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data. Numerische Mathematik, 2014, 126, 703-740.	0.9	33
197	Inverse Lax–Wendroff procedure for numerical boundary conditions of convection–diffusion equations. Journal of Computational Physics, 2016, 317, 276-300.	1.9	33
198	Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows. Journal of Scientific Computing, 2019, 78, 1811-1839.	1.1	33

#	Article	IF	CITATIONS
199	A note on the accuracy of spectral method applied to nonlinear conservation laws. Journal of Scientific Computing, 1995, 10, 357-369.	1.1	32
200	DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	1.7	32
201	A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws. Journal of Computational Physics, 2013, 250, 332-346.	1.9	32
202	A high order accurate conservative remapping method on staggered meshes. Applied Numerical Mathematics, 2008, 58, 1042-1060.	1.2	31
203	A Provably Positive Discontinuous Galerkin Method for Multidimensional Ideal Magnetohydrodynamics. SIAM Journal of Scientific Computing, 2018, 40, B1302-B1329.	1.3	31
204	Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations. , 1996, , .		30
205	The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship. Transportation Science, 2009, 43, 511-530.	2.6	30
206	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case. Journal of Computational Physics, 2016, 312, 385-415.	1.9	30
207	On One-Sided Filters for Spectral Fourier Approximations of Discontinuous Functions. SIAM Journal on Numerical Analysis, 1992, 29, 905-916.	1.1	29
208	Discontinuous Galerkin Method for Time-Dependent Problems: Survey and Recent Developments. The IMA Volumes in Mathematics and Its Applications, 2014, , 25-62.	0.5	29
209	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case. Journal of Computational Physics, 2016, 312, 416-442.	1.9	29
210	Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. Journal of Computational Physics, 2018, 361, 111-135.	1.9	29
211	Energy Models for One-Carrier Transport in Semiconductor Devices. The IMA Volumes in Mathematics and Its Applications, 1994, , 185-207.	0.5	29
212	Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations. SIAM Journal of Scientific Computing, 2011, 33, 1873-1896.	1.3	28
213	Improvement of Convergence to Steady State Solutions ofÂEuler Equations withÂtheÂWENOÂSchemes. Journal of Scientific Computing, 2011, 47, 216-238.	1.1	28
214	Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations. SIAM Journal of Scientific Computing, 2012, 34, A627-A658.	1.3	28
215	A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting. Journal of Computational Physics, 1992, 100, 424-429.	1.9	27
216	Superconvergence of local discontinuous Galerkin methods for one-dimensional convection–diffusion equations. Computers and Structures, 2009, 87, 630-641.	2.4	27

#	Article	IF	CITATIONS
217	An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method. Journal of Computational Physics, 2010, 229, 8823-8843.	1.9	27
218	Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 2814-2827.	3.4	27
219	Superconvergence of Discontinuous Galerkin Method for Scalar Nonlinear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2018, 56, 732-765.	1.1	27
220	A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. Journal of Computational Physics, 2020, 406, 109212.	1.9	27
221	On the positivity of linear weights in WENO approximations. Acta Mathematicae Applicatae Sinica, 2009, 25, 503-538.	0.4	26
222	Unconditional Energy Stability Analysis of a Second Order Implicit–Explicit Local Discontinuous Galerkin Method for the Cahn–Hilliard Equation. Journal of Scientific Computing, 2017, 73, 1178-1203.	1.1	26
223	An Eulerian Approach for Vortex Motion Using a Level Set Regularization Procedure. Journal of Computational Physics, 1996, 127, 15-26.	1.9	25
224	Convergence of Godunov-Type Schemes for Scalar Conservation Laws under Large Time Steps. SIAM Journal on Numerical Analysis, 2008, 46, 2211-2237.	1.1	25
225	Central local discontinuous galerkin methods on overlapping cells for diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45, 1009-1032.	0.8	25
226	Stability analysis of the inverse Lax–Wendroff boundary treatment for high order upwind-biased finite difference schemes. Journal of Computational and Applied Mathematics, 2016, 299, 140-158.	1.1	25
227	Strong Stability of Explicit Runge-Kutta Time Discretizations. SIAM Journal on Numerical Analysis, 2019, 57, 1158-1182.	1.1	25
228	A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows. Journal of Scientific Computing, 2019, 79, 1015-1056.	1.1	25
229	Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Science China Mathematics, 2020, 63, 183-204.	0.8	25
230	Uniform High-Order Spectral Methods for One- and Two-Dimensional Euler Equations. Journal of Computational Physics, 1993, 104, 427-443.	1.9	24
231	The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems. Multiscale Modeling and Simulation, 2005, 3, 871-894.	0.6	24
232	Explicit construction of entropy solutions for the Lighthill–Whitham–Richards traffic flow model with a piecewise quadratic flow–density relationship. Transportation Research Part B: Methodological, 2008, 42, 355-372.	2.8	24
233	High-order well-balanced schemes and applications to non-equilibrium flow. Journal of Computational Physics, 2009, 228, 6682-6702.	1.9	23
234	Development and stability analysis of the inverse Laxâ "Wendroff boundary treatment for central compact schemes. ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49, 39-67.	0.8	23

#	Article	IF	CITATIONS
235	A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework. Applied Numerical Mathematics, 2015, 95, 173-198.	1.2	23
236	Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. Science China Mathematics, 2016, 59, 115-140.	0.8	23
237	HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS. Lecture Notes Series, Institute for Mathematical Sciences, 2007, , 47-91.	0.2	23
238	TVB boundary treatment for numerical solutions of conservation laws. Mathematics of Computation, 1987, 49, 123-134.	1.1	22
239	Computational macroscopic approximations to the one-dimensional relaxation-time kinetic system for semiconductors. Physica D: Nonlinear Phenomena, 2000, 146, 289-306.	1.3	22
240	Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation. Communications in Computational Physics, 2011, 10, 474-508.	0.7	22
241	Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates. Journal of Computational Physics, 2014, 272, 245-265.	1.9	22
242	High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study. Communications in Computational Physics, 2016, 20, 835-869.	0.7	22
243	A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye model. Mathematical Models and Methods in Applied Sciences, 2017, 27, 549-579.	1.7	22
244	Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. Journal of Computational Physics, 2017, 349, 80-96.	1.9	22
245	Third order implicit–explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions. Journal of Computational and Applied Mathematics, 2018, 342, 164-179.	1.1	22
246	Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations. Annals of Mathematical Sciences and Applications, 2017, 2, 255-284.	0.2	22
247	The WKB Local Discontinuous Galerkin Method forÂtheÂSimulation of Schrödinger Equation inÂaÂResonant Tunneling Diode. Journal of Scientific Computing, 2009, 40, 360-374.	1.1	21
248	High-Order Computational Scheme for a Dynamic Continuum Model for Bi-Directional Pedestrian Flows. Computer-Aided Civil and Infrastructure Engineering, 2011, 26, 298-310.	6.3	21
249	Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes. Communications in Computational Physics, 2012, 11, 1144-1168.	0.7	21
250	High Order Positivity-Preserving Discontinuous Galerkin Methods for Radiative Transfer Equations. SIAM Journal of Scientific Computing, 2016, 38, A2987-A3019.	1.3	21
251	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. Journal of Computational Physics, 2020, 404, 109105.	1.9	21
252	Essentially Nonoscillatory Spectral Fourier Methods for Shock Wave Calculations., 1997,, 375-396.		21

#	Article	IF	Citations
253	Low-Redshift Cosmic Baryon Fluid on Large Scales and She-Leveque Universal Scaling. Physical Review Letters, 2006, 96, 051302.	2.9	20
254	Local Discontinuous Galerkin Method for Surface Diffusion and Willmore Flow of Graphs. Journal of Scientific Computing, 2009, 40, 375-390.	1.1	20
255	Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation. Communications in Computational Physics, 2011, 10, 474-508.	0.7	20
256	Implicit Positivity-Preserving High-Order Discontinuous Galerkin Methods for Conservation Laws. SIAM Journal of Scientific Computing, 2018, 40, A81-A107.	1.3	20
257	A WENO-Solver for the 1D Non-Stationary Boltzmann–Poisson System for Semiconductor Devices. Journal of Computational Electronics, 2002, 1, 365-370.	1.3	19
258	Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems. Journal of Scientific Computing, 2006, 28, 307-318.	1,1	19
259	Local discontinuous Galerkin methods for moment models in device simulations: Performance assessment and two-dimensional results. Applied Numerical Mathematics, 2007, 57, 629-645.	1.2	19
260	A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations. BoletÃn De La Sociedad EspaÑola De MatemÃŧica Aplicada, 2011, 54, 47-64.	0.9	19
261	TURBULENCE IN THE INTERGALACTIC MEDIUM: SOLENOIDAL AND DILATATIONAL MOTIONS AND THE IMPACT OF NUMERICAL VISCOSITY. Astrophysical Journal, 2013, 777, 48.	1.6	19
262	Finite difference Hermite WENO schemes for the Hamilton–Jacobi equations. Journal of Computational Physics, 2017, 337, 27-41.	1.9	19
263	Discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials on unstructured meshes. Journal of Computational and Applied Mathematics, 2018, 342, 147-163.	1.1	19
264	Transport effects and characteristic modes in the modeling and simulation of submicron devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1995, 14, 917-923.	1.9	18
265	A High Order WENO Scheme for a Hierarchical Size-Structured Population Model. Journal of Scientific Computing, 2007, 33, 279-291.	1.1	18
266	Discontinuous Galerkin solver for Boltzmann-Poisson transients. Journal of Computational Electronics, 2008, 7, 119-123.	1.3	18
267	The mechanism of sound generation in the interaction between a shock wave and two counter-rotating vortices. Physics of Fluids, 2009, 21, 076101.	1.6	18
268	Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows. Journal of Computational Physics, 2011, 230, 4316-4335.	1.9	18
269	Stability Analysis of the Inverse Lax–Wendroff Boundary Treatment for High Order Central Difference Schemes for Diffusion Equations. Journal of Scientific Computing, 2017, 70, 576-607.	1.1	18
270	Entropy Symmetrization and High-Order Accurate Entropy Stable Numerical Schemes for Relativistic MHD Equations. SIAM Journal of Scientific Computing, 2020, 42, A2230-A2261.	1.3	18

#	Article	IF	Citations
271	Topological structure of shock induced vortex breakdown. Journal of Fluid Mechanics, 2009, 639, 343-372.	1.4	17
272	<i>A priori</i> error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49, 991-1018.	0.8	17
273	Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion Problems. Journal of Scientific Computing, 2019, 81, 2080-2114.	1.1	17
274	Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations. Numerische Mathematik, 2021, 148, 699-741.	0.9	17
275	High-order essentially non-oscillatory scheme for viscoelasticity with fading memory. Quarterly of Applied Mathematics, 1997, 55, 459-484.	0.5	16
276	Local Discontinuous Galerkin Methods for Moment Models in Device Simulations: Formulation and One Dimensional Results. Journal of Computational Electronics, 2004, 3, 263-267.	1.3	16
277	Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. Physics of Fluids, 2006, 18, 126101.	1.6	16
278	A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework on unstructured meshes. Applied Numerical Mathematics, 2015, 90, 146-167.	1.2	16
279	Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 2213-2235.	0.8	16
280	A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. Advances in Aerodynamics, 2019, 1 , .	1.3	16
281	The L\$^2\$-norm Stability Analysis of RungeKutta Discontinuous Galerkin Methods for Linear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2019, 57, 1574-1601.	1.1	16
282	Effects of shock waves on Rayleigh-Taylor instability. Physics of Plasmas, 2006, 13, 062705.	0.7	15
283	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes. Applied Numerical Mathematics, 2020, 153, 519-539.	1.2	15
284	A discontinuous Galerkin implementation of a domain decomposition method for kinetic-hydrodynamic coupling multiscale problems in gas dynamics and device simulations. Journal of Computational Physics, 2007, 225, 1314-1330.	1.9	14
285	Convergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws. SIAM Journal of Scientific Computing, 2008, 31, 584-607.	1.3	14
286	Local Discontinuous Galerkin Method for the Hunter–Saxton Equation and Its Zero-Viscosity and Zero-Dispersion Limits. SIAM Journal of Scientific Computing, 2009, 31, 1249-1268.	1.3	14
287	Numerical simulations of compressible mixing layers with a discontinuous Galerkin method. Acta Mechanica Sinica/Lixue Xuebao, 2011, 27, 318-329.	1.5	14
288	High Order Finite Difference Methods with Subcell Resolution for Stiff Multispecies Discontinuity Capturing. Communications in Computational Physics, 2015, 17, 317-336.	0.7	14

#	Article	IF	Citations
289	Post-Processing of Galerkin Methods for Hyperbolic Problems. Lecture Notes in Computational Science and Engineering, 2000, , 291-300.	0.1	14
290	Preface to the Republication of "Uniformly High Order Essentially Non-oscillatory Schemes, III,―by Harten, Engquist, Osher, and Chakravarthy. Journal of Computational Physics, 1997, 131, 1-2.	1.9	13
291	Discontinuous Galerkin method for a class of elliptic multiâ€scale problems. International Journal for Numerical Methods in Fluids, 2008, 56, 1017-1032.	0.9	13
292	WENO Scheme with Subcell Resolution for Computing Nonconservative Euler Equations with Applications to One-Dimensional Compressible Two-Medium Flows. Journal of Scientific Computing, 2012, 53, 222-247.	1.1	13
293	A discontinuous Galerkin scheme for front propagation with obstacles. Numerische Mathematik, 2014, 126, 1-31.	0.9	13
294	On local conservation of numerical methods for conservation laws. Computers and Fluids, 2018, 169, 3-9.	1.3	13
295	An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary. Journal of Computational Physics, 2021, 426, 109940.	1.9	13
296	An Oscillation-free Discontinuous Galerkin Method for Scalar Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 2021, 59, 1299-1324.	1.1	13
297	An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Mathematics of Computation, 2020, 89, 2753-2783.	1.1	13
298	A WENO algorithm of the temperature and ionization profiles around a point source. New Astronomy, 2007, 12, 398-409.	0.8	12
299	RESONANT SCATTERING AND Lyα RADIATION EMERGENT FROM NEUTRAL HYDROGEN HALOS. Astrophysical Journal, 2010, 716, 604-614.	1.6	12
300	A Conservative Modification to the Ghost Fluid Method for Compressible Multiphase Flows. Communications in Computational Physics, 2011, 10, 785-806.	0.7	12
301	Discontinuous Galerkin Methods for Time-Dependent Convection Dominated Problems: Basics, Recent Developments and Comparison with Other Methods. Lecture Notes in Computational Science and Engineering, 2016, , 371-399.	0.1	12
302	Three-dimensional ghost-fluid large-scale numerical investigation on air explosion. Computers and Fluids, 2016, 137, 70-79.	1.3	12
303	Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Mathematics of Computation, 2018, 88, 91-121.	1.1	12
304	Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems. Journal of Computational Physics, 2019, 394, 329-363.	1.9	12
305	Weighted ghost fluid discontinuous Galerkin method for two-medium problems. Journal of Computational Physics, 2021, 426, 109956.	1.9	12
306	A high order positivity-preserving conservative WENO remapping method on 2D quadrilateral meshes. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113497.	3.4	12

#	Article	IF	CITATIONS
307	TIME EVOLUTION OF WOUTHUYSEN-FIELD COUPLING. Astrophysical Journal, 2009, 694, 1121-1130.	1.6	11
308	Classification and sound generation of two-dimensional interaction of two Taylor vortices. Physics of Fluids, $2013, 25, \ldots$	1.6	11
309	Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin schemes: Triangular elements. Journal of Computational Physics, 2019, 395, 461-488.	1.9	11
310	Modeling and simulation of urban air pollution from the dispersion of vehicle exhaust: A continuum modeling approach. International Journal of Sustainable Transportation, 2019, 13, 722-740.	2.1	11
311	Superconvergence Analysis of the Runge–Kutta Discontinuous Galerkin Methods for a Linear Hyperbolic Equation. Journal of Scientific Computing, 2020, 84, 1.	1.1	11
312	Error Estimate of the Fourth-Order RungeKutta Discontinuous Galerkin Methods for Linear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2020, 58, 2885-2914.	1.1	11
313	Inverse Laxâ€"Wendroff Procedure for Numerical Boundary Conditions of Hyperbolic Equations: Survey and New Developments. Fields Institute Communications, 2013, , 41-63.	0.6	11
314	Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations. AIAA Journal, 1998, 36, 775-782.	1.5	11
315	A WENO algorithm for the growth of ionized regions at the reionization epoch. New Astronomy, 2008, 13, 1-11.	0.8	10
316	A WENO algorithm for radiative transfer with resonant scattering and the Wouthuysen–Field coupling. New Astronomy, 2009, 14, 513-520.	0.8	10
317	Multi-scale Discontinuous Galerkin Method for Solving Elliptic Problems with Curvilinear Unidirectional Rough Coefficients. Journal of Scientific Computing, 2014, 61, 42-60.	1.1	10
318	H(div) conforming and DG methods for incompressible Euler's equations. IMA Journal of Numerical Analysis, 0, , drw054.	1.5	10
319	Conservative High Order Positivity-Preserving Discontinuous Galerkin Methods for Linear Hyperbolic and Radiative Transfer Equations. Journal of Scientific Computing, 2018, 77, 1801-1831.	1.1	10
320	A Discontinuous Galerkin Method for Stochastic Conservation Laws. SIAM Journal of Scientific Computing, 2020, 42, A54-A86.	1.3	10
321	Well-Balanced Finite-Volume Schemes for Hydrodynamic Equations with General Free Energy. Multiscale Modeling and Simulation, 2020, 18, 502-541.	0.6	10
322	Multi-resolution HWENO schemes for hyperbolic conservation laws. Journal of Computational Physics, 2021, 446, 110653.	1.9	10
323	An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12, 885-908.	0.5	10
324	Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Science China Mathematics, 2010, 53, 3255-3278.	0.8	9

#	Article	IF	Citations
325	Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition. Transportation Research Part B: Methodological, 2015, 79, 189-217.	2.8	9
326	A New Multiscale Discontinuous Galerkin Method for the One-Dimensional Stationary Schrödinger Equation. Journal of Scientific Computing, 2016, 66, 321-345.	1.1	9
327	Error estimates to smooth solutions of semiâ€discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws. Numerical Methods for Partial Differential Equations, 2017, 33, 467-488.	2.0	9
328	Stability analysis and error estimates of arbitrary Lagrangian–Eulerian discontinuous Galerkin method coupled with Runge–Kutta time-marching for linear conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53, 105-144.	0.8	9
329	Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: a Numerical Study. Communications on Applied Mathematics and Computation, 2020, 2, 429-460.	0.7	9
330	Stability analysis of inverse Lax–Wendroff boundary treatment of high order compact difference schemes for parabolic equations. Journal of Computational and Applied Mathematics, 2022, 400, 113711.	1.1	9
331	An Essentially Oscillation-Free Discontinuous Galerkin Method for Hyperbolic Systems. SIAM Journal of Scientific Computing, 2022, 44, A230-A259.	1.3	9
332	Simulating Quasi-ballistic Transport in Si Nanotransistors. VLSI Design, 2001, 13, 5-13.	0.5	8
333	Numerical solution of a virtual internal bond model for material fracture. Physica D: Nonlinear Phenomena, 2002, 167, 101-121.	1.3	8
334	The Dynamics of a Plane Diode. SIAM Journal on Mathematical Analysis, 2004, 35, 1617-1635.	0.9	8
335	A Discontinuous Galerkin Solver for Full-Band Boltzmann-Poisson Models. , 2009, , .		8
336	Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation laws. Nonlinearity, 2009, 22, 2799-2812.	0.6	8
337	High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model. Journal of Computational and Applied Mathematics, 2011, 236, 937-949.	1.1	8
338	A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations. Communications in Computational Physics, 2012, 12, 1307-1328.	0.7	8
339	A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber. Computer Methods in Applied Mechanics and Engineering, 2017, 318, 456-473.	3.4	8
340	Optimal Error Estimates of the Semidiscrete Central Discontinuous Galerkin Methods for Linear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2018, 56, 520-541.	1.1	8
341	Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 1797-1820.	0.8	8
342	On a class of splines free of Gibbs phenomenon. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, S29-S64.	0.8	8

#	Article	IF	CITATIONS
343	The Response of the Hydrodynamic Model to Heat Conduction, Mobility, and Relaxation Expressions. VLSI Design, 1995, 3, 131-143.	0.5	8
344	Anti-diffusive High Order WENO Schemes for Hamilton-Jacobi Equations. Methods and Applications of Analysis, 2005, 12, 169-190.	0.1	8
345	Analysis of the discontinuous Galerkin method applied to the diffusion operator., 1999,,.		7
346	DSMC versus WENO-BTE: A double gate MOSFET example. Journal of Computational Electronics, 2007, 5, 471-474.	1.3	7
347	The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids. Multiscale Modeling and Simulation, 2008, 7, 294-320.	0.6	7
348	WOUTHUYSEN-FIELD COUPLING IN THE 21 cm REGION AROUND HIGH-REDSHIFT SOURCES. Astrophysical Journal, 2009, 703, 1992-2003.	1.6	7
349	Fourier analysis for discontinuous Galerkin and related methods. Science Bulletin, 2009, 54, 1809-1816.	4.3	7
350	A Discontinuous Galerkin Solver for Front Propagation. SIAM Journal of Scientific Computing, 2011, 33, 923-938.	1.3	7
351	Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates. Computers and Fluids, 2017, 157, 112-130.	1.3	7
352	Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 1931-1955.	0.8	7
353	On the conservation of finite difference WENO schemes in non-rectangular domains using the inverse Lax-Wendroff boundary treatments. Journal of Computational Physics, 2020, 415, 109516.	1.9	7
354	A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. Journal of Computational and Applied Mathematics, 2021, 386, 113230.	1.1	7
355	A local discontinuous Galerkin method for nonlinear parabolic SPDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, S187-S223.	0.8	7
356	High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems. Applied Numerical Mathematics, 2021, 165, 482-499.	1.2	7
357	Multi-symplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise. Journal of Computational Physics, 2022, 461, 111199.	1.9	7
358	Essentially Nonoscillatory Spectral Fourier Method for Shocks Wave Calculations. Mathematics of Computation, 1989, 52, 389.	1.1	6
359	On the Gibbs phenomenon. IV. Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function. Mathematics of Computation, 1995, 64, 1081-1095.	1.1	6
360	Modeling, numerical methods, and simulation for particle-fluid two-phase flow problems. Computers and Mathematics With Applications, 2004, 47, 1437-1462.	1.4	6

#	Article	IF	Citations
361	A shock-fitting algorithm for the Lighthillâ \in "Whithamâ \in "Richards model on inhomogeneous highways. Transportmetrica, 2011, 7, 163-180.	1.8	6
362	THE ANGULAR DISTRIBUTION OF Lyı̂ \pm RESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM. Astrophysical Journal, 2013, 772, 3.	1.6	6
363	On high-order accurate weighted essentially non-oscillatory and discontinuous Galerkin schemes for compressible turbulence simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120172.	1.6	6
364	Stability analysis and error estimates of Lax–Wendroff discontinuous Galerkin methods for linear conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 1063-1087.	0.8	6
365	Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations. Communications on Applied Mathematics and Computation, 2019, 1, 101-116.	0.7	6
366	An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Korteweg–de Vries equation. Journal of Computational and Applied Mathematics, 2019, 349, 41-51.	1.1	6
367	High order conservative Lagrangian schemes for one-dimensional radiation hydrodynamics equations in the equilibrium-diffusion limit. Journal of Computational Physics, 2020, 421, 109724.	1.9	6
368	Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using <i>P</i> <csup><i>k</i> elements. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 705-726.</csup>	0.8	6
369	Energy transport systems for semiconductors: Analysis and simulation. , 1996, , 3835-3846.		6
370	Applicability of the High Field Model: A Preliminary Numerical Study. VLSI Design, 1998, 8, 275-282.	0.5	5
371	Simulating quasi-ballistic transport in Si nanotransistors. , 0, , .		5
372	On the Conservation and Convergence to Weak Solutions of Global Schemes. Journal of Scientific Computing, 2003, 18, 111-132.	1.1	5
373	Analysis of the relativistic Vlasov-Maxwell model in an interval. Quarterly of Applied Mathematics, 2005, 63, 691-714.	0.5	5
374	Numerical Solutions of Partial Differential Equations. , 2009, , .		5
375	EFFECT OF DUST ON Lyα PHOTON TRANSFER IN AN OPTICALLY THICK HALO. Astrophysical Journal, 2011, 739, 91.	1.6	5
376	Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes. Acta Mathematicae Applicatae Sinica, 2013, 29, 449-464.	0.4	5
377	High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates. Mathematical Models and Methods in Applied Sciences, 2015, 25, 1553-1588.	1.7	5
378	Bound-Preserving High-Order Schemes for Hyperbolic Equations: Survey and Recent Developments. Springer Proceedings in Mathematics and Statistics, 2018, , 591-603.	0.1	5

#	Article	IF	CITATIONS
379	On New Strategies to Control the Accuracy of WENO Algorithms Close to Discontinuities. SIAM Journal on Numerical Analysis, 2019, 57, 1205-1237.	1.1	5
380	High order finite difference hermite WENO schemes for the Hamilton–Jacobi equations on unstructured meshes. Computers and Fluids, 2019, 183, 53-65.	1.3	5
381	On a new WENO algorithm of order <mml:math altimg="si2.svg" display="inline" id="d1e2474" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>r</mml:mi></mml:mrow></mml:math> with improved accuracy close to discontinuities. Applied Mathematics Letters. 2020. 105. 106298.	1.5	5
382	Discontinuous Galerkin Solver for the Semiconductor Boltzmann Equation., 2007,, 257-260.		5
383	Approximation of the BTE by a Relaxation-time Operator: Simulations for a 50 nm-channel Si Diode. VLSI Design, 2001, 13, 349-354.	0.5	5
384	An improved simple WENO limiter for discontinuous Galerkin methods solving hyperbolic systems on unstructured meshes. Journal of Computational Physics, 2022, 467, 111424.	1.9	5
385	Applicability of the High Field Model: An Analytical Study Via Asymptotic Parameters Defining Domain Decomposition. VLSI Design, 1998, 8, 135-141.	0.5	4
386	Recovering exponential accuracy from collocation point values of smooth functions with end-point singularities. Journal of Computational and Applied Mathematics, 2014, 265, 83-95.	1.1	4
387	Convergence of discontinuous Galerkin schemes for front propagation with obstacles. Mathematics of Computation, 2015, 85, 2131-2159.	1.1	4
388	Recovering Exponential Accuracy in Fourier Spectral Methods Involving Piecewise Smooth Functions with Unbounded Derivative Singularities. Journal of Scientific Computing, 2015, 65, 1145-1165.	1.1	4
389	Assessment of aeroacoustic resolution properties of DG schemes and comparison with DRP schemes. Journal of Computational Physics, 2019, 399, 108960.	1.9	4
390	Existence and Computation of Solutions of a Model of Traffic Involving Hysteresis. SIAM Journal on Applied Mathematics, 2020, 80, 2319-2337.	0.8	4
391	An Ultra-Weak Discontinuous Galerkin Method with Implicit–Explicit Time-Marching for Generalized Stochastic KdV Equations. Journal of Scientific Computing, 2020, 82, 1.	1.1	4
392	A high order conservative finite difference scheme for compressible two-medium flows. Journal of Computational Physics, 2021, 445, 110597.	1.9	4
393	A comparison of two formulations for high-order accurate essentiallynon-oscillatory schemes. , 1993, , .		3
394	Analysis of preconditioning and relaxation operators for the discontinuous Galerkin method applied to diffusion. , 2001 , , .		3
395	Lines of Pulsed Energy: Shock Mitigation and Drag Reduction. , 2004, , .		3
396	Efficient implementation of the shockâ€fitting algorithm for the Lighthill–Whitham–Richards traffic flow model. International Journal for Numerical Methods in Engineering, 2008, 74, 554-600.	1.5	3

#	Article	IF	CITATIONS
397	A Lagrangian scheme with the preservation of symmetry and conservation in cylindrical geometry: Preliminary study. Procedia Computer Science, 2010, 1, 1903-1911.	1.2	3
398	Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates. Science China Mathematics, 2013, 56, 2645-2676.	0.8	3
399	A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations. Journal of Scientific Computing, 2017, 73, 1028-1071.	1.1	3
400	Bound-Preserving High Order Finite Volume Schemes for Conservation Laws and Convection-Diffusion Equations. Springer Proceedings in Mathematics and Statistics, 2017, , 3-14.	0.1	3
401	On the time growth of the error of the DG method for advective problems. IMA Journal of Numerical Analysis, 2019, 39, 687-712.	1.5	3
402	On moving mesh WENO schemes with characteristic boundary conditions for Hamilton-Jacobi equations. Computers and Fluids, 2020, 205, 104582.	1.3	3
403	A Sequel of Inverse Lax–Wendroff High Order Wall Boundary Treatment for Conservation Laws. Archives of Computational Methods in Engineering, 2021, 28, 2315-2329.	6.0	3
404	The Effect of the Least Square Procedure for Discontinuous Galerkin Methods for Hamilton-Jacobi Equations. Lecture Notes in Computational Science and Engineering, 2000, , 343-348.	0.1	3
405	A New WENO-2\$r\$ Algorithm with Progressive Order of Accuracy Close to Discontinuities. SIAM Journal on Numerical Analysis, 2020, 58, 3448-3474.	1.1	3
406	Multi-layer Perceptron Estimator for the Total Variation Bounded Constant in Limiters for Discontinuous Galerkin Methods. La Matematica, 2022, 1, 53-84.	0.3	3
407	A high order positivity-preserving conservative WENO remapping method on 3D tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 2022, 395, 115037.	3.4	3
408	Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. Journal of Computational Physics, 2022, 464, 111314.	1.9	3
409	Analysis and Simulation of Extended Hydrodynamic Models: The Multi-Valley Gunn Oscillator and MESFET Symmetries. VLSI Design, 1998, 6, 277-282.	0.5	2
410	Discontinuous Galerkin methods for the Boltzmann-Poisson systems in semiconductor device simulations. , 2011, , .		2
411	Discontinuous Galerkin deterministic solvers for a Boltzmann–Poisson model of hot electron transport by averaged empirical pseudopotential band structures. Computer Methods in Applied Mechanics and Engineering, 2017, 321, 209-234.	3.4	2
412	Discontinuous Galerkin methods for a kinetic model of self-organized dynamics. Mathematical Models and Methods in Applied Sciences, 2018, 28, 1171-1197.	1.7	2
413	Preface to the Focused Issue on Fractional Derivatives and General Nonlocal Models. Communications on Applied Mathematics and Computation, 2019, 1, 503-504.	0.7	2
414	Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise. Journal of Scientific Computing, 2019, 81, 1210-1239.	1.1	2

#	Article	IF	CITATIONS
415	Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity. Communications on Applied Mathematics and Computation, 0, , $1\cdot$	0.7	2
416	An Overview on High Order Numerical Methods for Convection Dominated PDEs., 2003,, 79-88.		2
417	A Numerical Example on the Performance of High Order Discontinuous Galerkin Method for 2D Incompressible Flows. Lecture Notes in Computational Science and Engineering, 2000, , 369-374.	0.1	2
418	High-Resolution Viscous Terms Discretization and ILW Solid Wall Boundary Treatment for the Navier–Stokes Equations. Archives of Computational Methods in Engineering, 2022, 29, 2383-2395.	6.0	2
419	High order entropy stable and positivity-preserving discontinuous Galerkin method for the nonlocal electron heat transport model. Journal of Computational Physics, 2022, 454, 110945.	1.9	2
420	High-resolution ILW outflow boundary treatment for the Navier–Stokes equations. Computers and Fluids, 2022, 242, 105506.	1.3	2
421	Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach. Transportation Science, 0, , .	2.6	2
422	L\$^2\$ Error Estimate to Smooth Solutions of High Order RungeKutta Discontinuous Galerkin Method for Scalar Nonlinear Conservation Laws with and without Sonic Points. SIAM Journal on Numerical Analysis, 2022, 60, 1741-1773.	1.1	2
423	Performance of a discontinuous Galerkin solver for semiconductor boltzmann equations. , 2010, , .		1
424	Numerical Solution of the Viscous Surface Wave with Discontinuous Galerkin Method. ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49, 1019-1046.	0.8	1
425	A High Order Stable Conservative Method for Solving Hyperbolic Conservation Laws on Arbitrarily Distributed Point Clouds. SIAM Journal of Scientific Computing, 2016, 38, A3094-A3128.	1.3	1
426	High Order and High Resolution Numerical Schemes for Computational Aeroacoustics and Their Applications. Lecture Notes in Mechanical Engineering, 2016, , 27-32.	0.3	1
427	Runge-Kutta and Lax-Wendroff discontinuous Galerkin methods for linear conservation laws. AIP Conference Proceedings, 2017, , .	0.3	1
428	IMEX time marching for discontinuous Galerkin methods. AIP Conference Proceedings, 2017, , .	0.3	1
429	Foreword by the Editor-in-Chief. Communications on Applied Mathematics and Computation, 2019, 1, 1-1.	0.7	1
430	Completed repeated Richardson extrapolation for compressible fluid flows. Applied Mathematical Modelling, 2020, 77, 724-737.	2.2	1
431	Central discontinuous Galerkin methods on overlapping meshes for wave equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 329-356.	0.8	1
432	Cell-average WENO with progressive order of accuracy close to discontinuities with applications to signal processing. Applied Mathematics and Computation, 2021, 403, 126131.	1.4	1

#	Article	IF	CITATIONS
433	Third and Fourth Order Weighted ENO Schemes for Hamilton-Jacobi Equations on 2D Unstructured Meshes., 2003,, 941-950.		1
434	A Fixed-Point Fast Sweeping WENO Method with Inverse Lax-Wendroff Boundary Treatment for Steady State of Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation, 2023, 5, 403-427.	0.7	1
435	Development and analysis of two new finite element schemes for a time-domain carpet cloak model. Advances in Computational Mathematics, 2022, 48, .	0.8	1
436	High order conservative positivity-preserving discontinuous Galerkin method for stationary hyperbolic equations. Journal of Computational Physics, 2022, 466, 111410.	1.9	1
437	High-order WENO and discontinuous Galerkin methods for time dependent simulations. , 2000, , .		0
438	A ballistic-hydrodynamic model for transport in nano-devices. , 0, , .		0
439	Application of an Accuracy Enhancing Post-Processing Method to Aeroacoustic Simulations. , 2003, , .		0
440	Resolution of high order WENO schemes and Navier-Stokes simulation of the Rayleigh-Taylor instability problem. , 2003 , , 1216 - 1218 .		0
441	Local discontinuous Galerkin methods for moment models in device simulations: formulation and one dimensional results. , 2004, , .		0
442	A fast approach to discontinuous Galerkin solvers for Boltzmann-Poisson transport systems for full electronic bands and phonon scattering. , 2012 , , .		0
443	Recent developments on the Lagrangian and remapping methods for compressible fluid flows. , 2012, , 9-19.		0
444	Spatial Evolution of Large Scale Structures in Supersonic Shear Layers. , 2016, , .		0
445	Supersonic Film Cooling Simulation with a DG Method. , 2016, , .		0
446	Discontinuous Galerkin Methods for Weakly Coupled Hyperbolic MultiDomain Problems. SIAM Journal of Scientific Computing, 2017, 39, A2201-A2230.	1.3	0
447	Reprint of: Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates. Computers and Fluids, 2018, 169, 230-248.	1.3	0
448	A Foreword to the Special Issue in Honor of Professor Bernardo Cockburn on His 60th Birthday: A Life Time of Discontinuous Schemings. Journal of Scientific Computing, 2018, 77, 1303-1309.	1.1	0
449	Numerical solutions of stochastic PDEs driven by arbitrary type of noise. Stochastics and Partial Differential Equations: Analysis and Computations, 2019, 7, 1-39.	0.5	0
450	Preface to the Focused Issue in Honor of Professor Philip Roe on the Occasion of His 80th Birthday. Communications on Applied Mathematics and Computation, 2020, 2, 319-320.	0.7	0

#	Article	IF	CITATIONS
451	Preface to Focused Section on Efficient High-Order Time Discretization Methods for Partial Differential Equations. Communications on Applied Mathematics and Computation, 2021, 3, 605-605.	0.7	O
452	Preface to Focused Issue on Discontinuous Galerkin Methods. Communications on Applied Mathematics and Computation, 0, , 1.	0.7	0
453	The Utility of Modeling and Simulation in Determining Transport Performance Properties of Semiconductors. Lecture Notes in Computational Science and Engineering, 2000, , 147-156.	0.1	O
454	Discontinuous Galerkin methods for equations with divergence-free solutions. , 2003, , 1900-1902.		0
455	INTERGALACTIC MEDIUM IN THE ACDM UNIVERSE FROM COSMOLOGICAL SIMULATIONS. Journal of the Korean Astronomical Society, 2005, 38, 129-133.	1.5	O
456	High Order Accurate Modern Numerical Methods Applicable to Stellar Pulsations. , 1990, , 263-267.		0
457	Discontinous Galerkin Methods: Time-dependent Problems. , 2015, , 365-367.		O
458	Error Estimates for Linear Hyperbolic Equations. , 2015, , 440-445.		0
459	Local discontinuous Galerkin methods for the carpet cloak model. Annals of Mathematical Sciences and Applications, 2022, 7, 97-137.	0.2	О
460	Preface to the Focused Issue on WENO Schemes. Communications on Applied Mathematics and Computation, 2023, 5, 1-2.	0.7	0
461	Entropy Stable Galerkin Methods with Suitable Quadrature Rules for Hyperbolic Systems with Random Inputs. Journal of Scientific Computing, 2022, 92, .	1.1	О