Timothy J Egan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural-activity Relationship of Metallo-aminoquines as Next Generation Antimalarials. Current Topics in Medicinal Chemistry, 2022, 22, 436-472.	1.0	4
2	Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. Journal of Inorganic Biochemistry, 2022, 234, 111905.	1.5	7
3	A Diverse Range of Hemozoin Inhibiting Scaffolds Act on <i>Plasmodium falciparum</i> as Heme Complexes. ACS Infectious Diseases, 2021, 7, 362-376.	1.8	11
4	Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Accounts of Chemical Research, 2021, 54, 2649-2659.	7.6	42
5	Molecular Mechanism Exploration of Potent Fluorinated PI3K Inhibitors with a Triazine Scaffold: Unveiling the Unusual Synergistic Effect of Pyridine-to-Pyrimidine Ring Interconversion and CF ₃ Defluorination. Journal of Physical Chemistry B, 2021, 125, 10072-10084.	1.2	3
6	THC shows activity against cultured Plasmodium falciparum. Bioorganic and Medicinal Chemistry Letters, 2021, 54, 128442.	1.0	1
7	Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia. Neurobiology of Disease, 2020, 134, 104646.	2.1	20
8	Intrinsic fluorescence properties of antimalarial pyrido[1,2-a]benzimidazoles facilitate subcellular accumulation and mechanistic studies in the human malaria parasite Plasmodium falciparum. Organic and Biomolecular Chemistry, 2020, 18, 8668-8676.	1.5	10
9	Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and <i>In Vivo</i> Efficacy in the <i>Plasmodium falciparum</i> NSG Mouse Model. Journal of Medicinal Chemistry, 2020, 63, 13013-13030.	2.9	11
10	Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 51-58.	1.4	16
11	Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites. Molecules, 2020, 25, 1571.	1.7	9
12	Virtual screening as a tool to discover new \hat{l}^2 -haematin inhibitors with activity against malaria parasites. Scientific Reports, 2020, 10, 3374.	1.6	33
13	Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nature Communications, 2020, 11, 1780.	5.8	27
14	Quinoline Containing Side-chain Antimalarial Analogs: Recent Advances and Therapeutic Application. Current Topics in Medicinal Chemistry, 2020, 20, 617-697.	1.0	15
15	Structure–Activity Relationship Studies and <i>Plasmodium</i> Life Cycle Profiling Identifies Pan-Active <i>N</i> -Aryl-3-trifluoromethyl Pyrido[1,2- <i>a</i>)benzimidazoles Which Are Efficacious in an <i>in Vivo</i> Mouse Model of Malaria. Journal of Medicinal Chemistry, 2019, 62, 1022-1035.	2.9	8
16	Multistage Antiplasmodium Activity of Astemizole Analogues and Inhibition of Hemozoin Formation as a Contributor to Their Mode of Action. ACS Infectious Diseases, 2019, 5, 303-315.	1.8	16
17	Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	12
18	Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorganic Chemistry, 2018, 57, 1171-1183.	1.9	15

#	Article	IF	CITATIONS
19	Interplay between Plasmodium falciparum haemozoin and l-arginine: implication for nitric oxide production. Malaria Journal, 2018, 17, 456.	0.8	7
20	Editorial overview: Tuberculosis, malaria and schistosomiasis; understanding resistance and development of new drugs. Current Opinion in Pharmacology, 2018, 42, iv-vi.	1.7	2
21	Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. European Journal of Medicinal Chemistry, 2018, 159, 243-254.	2.6	25
22	Chemical Proteomics and Super-resolution Imaging Reveal That Chloroquine Interacts with <i>Plasmodium falciparum</i> Multidrug Resistance-Associated Protein and Lipids. ACS Chemical Biology, 2018, 13, 2939-2948.	1.6	26
23	Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions. Open Chemistry, 2018, 16, 763-789.	1.0	14
24	A Pharmacokinetic Analysis of Pyridodibemequines and their Metabolites. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-11-10.	0.0	0
25	Antimalarial Pyrido[1,2- <i>a</i>]benzimidazoles: Lead Optimization, Parasite Life Cycle Stage Profile, Mechanistic Evaluation, Killing Kinetics, and in Vivo Oral Efficacy in a Mouse Model. Journal of Medicinal Chemistry, 2017, 60, 1432-1448.	2.9	36
26	Identification and Mechanistic Evaluation of Hemozoin-Inhibiting Triarylimidazoles Active against <i>Plasmodium falciparum</i> . ACS Medicinal Chemistry Letters, 2017, 8, 201-205.	1.3	17
27	A Variant PfCRT Isoform Can Contribute to <i>Plasmodium falciparum</i> Resistance to the First-Line Partner Drug Piperaquine. MBio, 2017, 8, .	1.8	82
28	Antischistosomal Activity of Pyrido[1,2- <i>a</i>]benzimidazole Derivatives and Correlation with Inhibition of β-Hematin Formation. ACS Infectious Diseases, 2017, 3, 411-420.	1.8	15
29	4-Aminoquinoline Antimalarials Containing a Benzylmethylpyridylmethylamine Group Are Active against Drug Resistant <i>Plasmodium falciparum</i> and Exhibit Oral Activity in Mice. Journal of Medicinal Chemistry, 2017, 60, 10245-10256.	2.9	20
30	Shining new light on ancient drugs: preparation and subcellular localisation of novel fluorescent analogues of Cinchona alkaloids in intraerythrocytic Plasmodium falciparum. Organic and Biomolecular Chemistry, 2017, 15, 589-597.	1.5	20
31	Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nature Microbiology, 2017, 2, 1403-1414.	5.9	47
32	Insights into the initial stages of lipid-mediated haemozoin nucleation. CrystEngComm, 2016, 18, 5177-5187.	1.3	16
33	An eHealth android application for mobile analysis of microplate assays. , 2016, , .		2
34	Identification and SAR Evaluation of Hemozoin-Inhibiting Benzamides Active against <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2016, 59, 6512-6530.	2.9	25
35	Solution structures of chloroquine–ferriheme complexes modeled using MD simulation and investigated by EXAFS spectroscopy. Journal of Inorganic Biochemistry, 2016, 154, 114-125.	1.5	14
36	Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathogens, 2016, 12, e1005976.	2.1	34

#	Article	IF	CITATIONS
37	Optimization of a multi-well colorimetric assay to determine haem species in Plasmodium falciparum in the presence of anti-malarials. Malaria Journal, 2015, 14, 253.	0.8	48
38	Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model. Malaria Journal, 2015, 14, 505.	0.8	11
39	Synthesis, characterization and pharmacological evaluation ofÂferrocenyl azines and their rhodium(I) complexes. Journal of Organometallic Chemistry, 2015, 788, 1-8.	0.8	23
40	Antimalarial benzoheterocyclic 4-aminoquinolines: Structure–activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorganic and Medicinal Chemistry, 2015, 23, 5419-5432.	1.4	19
41	Bayesian models trained with HTS data for predicting Î ² -haematin inhibition and in vitro antimalarial activity. Bioorganic and Medicinal Chemistry, 2015, 23, 5210-5217.	1.4	20
42	N10,N11-di-alkylamine indolo[3,2-b]quinolines as hemozoin inhibitors: Design, synthesis and antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2015, 23, 1530-1539.	1.4	15
43	Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites. Bioorganic and Medicinal Chemistry, 2015, 23, 5131-5143.	1.4	21
44	Drug-resistant Plasmodium falciparum: are recent advances a cause for optimism?. Future Microbiology, 2015, 10, 1261-1263.	1.0	2
45	Identification and Deconvolution of Cross-Resistance Signals from Antimalarial Compounds Using Multidrug-Resistant Plasmodium falciparum Strains. Antimicrobial Agents and Chemotherapy, 2015, 59, 1110-1118.	1.4	34
46	Involvement of Nod2 in the innate immune response elicited by malarial pigment hemozoin. Microbes and Infection, 2015, 17, 184-194.	1.0	20
47	Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus. PLoS ONE, 2014, 9, e88976.	1.1	12
48	Molecular Structures and Solvation of Free Monomeric and Dimeric Ferriheme in Aqueous Solution: Insights from Molecular Dynamics Simulations and Extended X-ray Absorption Fine Structure Spectroscopy. Inorganic Chemistry, 2014, 53, 10811-10824.	1.9	15
49	Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. European Journal of Medicinal Chemistry, 2014, 84, 425-432.	2.6	29
50	Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 316-325.	1.4	37
51	Multiple spectroscopic and magnetic techniques show that chloroquine induces formation of the μ-oxo dimer of ferriprotoporphyrin IX. Journal of Inorganic Biochemistry, 2014, 133, 40-49.	1.5	16
52	Synthesis, Î ² -haematin inhibition, and in vitro antimalarial testing of isocryptolepine analogues: SAR study of indolo[3,2-c]quinolines with various substituents at C2, C6, and N11. Bioorganic and Medicinal Chemistry, 2014, 22, 2629-2642.	1.4	59
53	Synthesis and evaluation of artesunate–indoloquinoline hybrids as antimalarial drug candidates. MedChemComm, 2014, 5, 927-931.	3.5	44
54	Kojic acid derived hydroxypyridinone–chloroquine hybrids: Synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3263-3267.	1.0	13

#	Article	IF	CITATIONS
55	Synthesis and Antimalarial Activity of Some Neocryptolepine Analogues Carrying a Multifunctional Linear and Branched Carbon-Side Chains. Heterocycles, 2014, 89, 1055.	0.4	10
56	InÂvitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles. European Journal of Medicinal Chemistry, 2013, 69, 338-347.	2.6	43
57	Dual-functioning antimalarials that inhibit the chloroquine-resistance transporter. Future Microbiology, 2013, 8, 475-489.	1.0	12
58	Synthetic Hemozoin (β-Hematin) Crystals Nucleate at the Surface of Neutral Lipid Droplets that Control Their Sizes. Crystal Growth and Design, 2013, 13, 4442-4452.	1.4	26
59	The Single Crystal X-ray Structure of β-Hematin DMSO Solvate Grown in the Presence of Chloroquine, a β-Hematin Growth-Rate Inhibitor. Journal of the American Chemical Society, 2013, 135, 1037-1047.	6.6	62
60	Synthesis, characterization, antiparasitic and cytotoxic evaluation ofÂthioureas conjugated to polyamine scaffolds. European Journal of Medicinal Chemistry, 2013, 69, 90-98.	2.6	29
61	Insights into the Role of Heme in the Mechanism of Action of Antimalarials. ACS Chemical Biology, 2013, 8, 133-137.	1.6	183
62	Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone–Chloroquine Hybrids. ACS Medicinal Chemistry Letters, 2013, 4, 642-646.	1.3	25
63	Structure–activity relationships for ferriprotoporphyrin IX association and β-hematin inhibition by 4-aminoquinolines using experimental and ab initio methods. Bioorganic and Medicinal Chemistry, 2013, 21, 3738-3748.	1.4	14
64	Synthesis and antimalarial testing of neocryptolepine analogues: Addition of ester function in SAR study of 2,11-disubstituted indolo[2,3-b]quinolines. European Journal of Medicinal Chemistry, 2013, 64, 498-511.	2.6	54
65	Iron(III) Protoporphyrin IX and Hemozoin: Key Targets in the Chemotherapy of Malaria. Handbook of Porphyrin Science, 2013, , 211-254.	0.3	Ο
66	Experimental and Time-Dependent Density Functional Theory Characterization of the UV–Visible Spectra of Monomeric and μ-Oxo Dimeric Ferriprotoporphyrin IX. Inorganic Chemistry, 2012, 51, 10233-10250.	1.9	21
67	Neutral lipids associated with haemozoin mediate efficient and rapid β-haematin formation at physiological pH, temperature and ionic composition. Malaria Journal, 2012, 11, 337.	0.8	35
68	The Antimalarial Ferroquine: Role of the Metal and Intramolecular Hydrogen Bond in Activity and Resistance. ACS Chemical Biology, 2011, 6, 275-287.	1.6	167
69	Quinoline Antimalarials Containing a Dibemethin Group Are Active against Chloroquinone-Resistant <i>Plasmodium falciparum</i> and Inhibit Chloroquine Transport via the <i>P. falciparum</i> Chloroquine-Resistance Transporter (PfCRT). Journal of Medicinal Chemistry, 2011, 54, 6956-6968.	2.9	56
70	Effects of highly active novel artemisinin–chloroquinoline hybrid compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum. Biochemical Pharmacology, 2011, 82, 236-247.	2.0	37
71	Enone– and Chalcone–Chloroquinoline Hybrid Analogues: In Silico Guided Design, Synthesis, Antiplasmodial Activity, in Vitro Metabolism, and Mechanistic Studies. Journal of Medicinal Chemistry, 2011, 54, 3637-3649.	2.9	87
72	A series of structurally simple chloroquine chemosensitizing dibemethin derivatives that inhibit chloroquine transport by PfCRT. European Journal of Medicinal Chemistry, 2011, 46, 1729-1742.	2.6	22

#	Article	IF	CITATIONS
73	Linear free energy relationships predict coordination and π-stacking interactions of small molecules with ferriprotoporphyrin IX. Journal of Inorganic Biochemistry, 2011, 105, 684-692.	1.5	24
74	Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorganic and Medicinal Chemistry, 2010, 18, 8243-8256.	1.4	163
75	Synthesis and anti-prion activity evaluation of aminoquinoline analogues. European Journal of Medicinal Chemistry, 2010, 45, 5468-5473.	2.6	18
76	Increase on the Initial Soluble Heme Levels in Acidic Conditions Is an Important Mechanism for Spontaneous Heme Crystallization In Vitro. PLoS ONE, 2010, 5, e12694.	1.1	28
77	Crystallization of Synthetic Hemozoin (Beta-Hematin) Nucleated at the Surface of Synthetic Neutral Lipid Bodies. Materials Research Society Symposia Proceedings, 2010, 1274, 1.	0.1	Ο
78	The Neutral Lipid Composition Present in the Digestive Vacuole of <i>Plasmodium falciparum</i> Concentrates Heme and Mediates β-Hematin Formation with an Unusually Low Activation Energy. Biochemistry, 2010, 49, 10107-10116.	1.2	59
79	On the physico-chemical and physiological requirements of hemozoin formation promoted by perimicrovillar membranes in Rhodnius prolixus midgut. Insect Biochemistry and Molecular Biology, 2010, 40, 284-292.	1.2	23
80	Crystallization of synthetic haemozoin (β-haematin) nucleated at the surface of lipid particles. Dalton Transactions, 2010, 39, 1235-1244.	1.6	63
81	Recent Advances in the Discovery of Haem-Targeting Drugs for Malaria and Schistosomiasis. Molecules, 2009, 14, 2868-2887.	1.7	44
82	Interference with Hemozoin Formation Represents an Important Mechanism of Schistosomicidal Action of Antimalarial Quinoline Methanols. PLoS Neglected Tropical Diseases, 2009, 3, e477.	1.3	74
83	Artemisinin-resistant <i>Plasmodium falciparum</i> : can the genie be put back in the bottle?. Future Microbiology, 2009, 4, 637-639.	1.0	8
84	Discriminating the Intraerythrocytic Lifecycle Stages of the Malaria Parasite Using Synchrotron FT-IR Microspectroscopy and an Artificial Neural Network. Analytical Chemistry, 2009, 81, 2516-2524.	3.2	42
85	Oriented Nucleation of \hat{l}^2 -Hematin Crystals Induced at Various Interfaces: Relevance to Hemozoin Formation. Crystal Growth and Design, 2009, 9, 626-632.	1.4	22
86	Speciation of Ferriprotoporphyrin IX in Aqueous and Mixed Aqueous Solution Is Controlled by Solvent Identity, pH, and Salt Concentration. Inorganic Chemistry, 2009, 48, 7994-8003.	1.9	72
87	Reversed Chloroquines Based on the 3,4â€Dihydropyrimidinâ€2(1 <i>H</i>)â€one Scaffold: Synthesis and Evaluation for Antimalarial, βâ€Haematin Inhibition, and Cytotoxic Activity. ChemMedChem, 2008, 3, 1649-1653.	1.6	41
88	Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. Journal of Inorganic Biochemistry, 2008, 102, 1288-1299.	1.5	161
89	The crystal structure of halofantrine–ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. Journal of Inorganic Biochemistry, 2008, 102, 1660-1667.	1.5	91
90	Haemozoin formation. Molecular and Biochemical Parasitology, 2008, 157, 127-136.	0.5	181

#	Article	IF	CITATIONS
91	Antiplasmodial, β-haematin inhibition, antitrypanosomal and cytotoxic activity in vitro of novel 4-aminoquinoline 2-imidazolines. Organic and Biomolecular Chemistry, 2008, 6, 4446.	1.5	20
92	Differential Effects of Quinoline Antimalarials on Endocytosis in <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1840-1842.	1.4	41
93	Strategies to reverse drug resistance in malaria. Current Opinion in Infectious Diseases, 2007, 20, 598-604.	1.3	53
94	Extracellular lipid droplets promote hemozoin crystallization in the gut of the blood flukeSchistosoma mansoni. FEBS Letters, 2007, 581, 1742-1750.	1.3	48
95	Haemozoin: from melatonin pigment to drug target, diagnostic tool, and immune modulator. Lancet Infectious Diseases, The, 2007, 7, 675-685.	4.6	116
96	Speciation and structure of ferriprotoporphyrin IX in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not μ-oxo dimer formation. Journal of Biological Inorganic Chemistry, 2007, 12, 101-117.	1.1	129
97	Solvent-Induced Effects: Self-Association of Positively Charged π Systems. Journal of the American Chemical Society, 2006, 128, 12122-12128.	6.6	39
98	Kinetics of β-haematin formation from suspensions of haematin in aqueous benzoic acid. Dalton Transactions, 2006, , 5024-5032.	1.6	17
99	Haemozoin (β-haematin) biomineralization occurs by self-assembly near the lipid/water interface. FEBS Letters, 2006, 580, 5105-5110.	1.3	129
100	Quinoline-resistance reversing agents for the malaria parasite Plasmodium falciparum. Drug Resistance Updates, 2006, 9, 211-226.	6.5	69
101	Interactions of quinoline antimalarials with hematin in solution. Journal of Inorganic Biochemistry, 2006, 100, 916-926.	1.5	90
102	Chloroquine and primaquine: combining old drugs as a new weapon against falciparum malaria?. Trends in Parasitology, 2006, 22, 235-237.	1.5	25
103	Quinoline antimalarials decrease the rate of β-hematin formation. Journal of Inorganic Biochemistry, 2005, 99, 1532-1539.	1.5	93
104	A colorimetric high-throughput β-hematin inhibition screening assay for use in the search for antimalarial compounds. Analytical Biochemistry, 2005, 338, 306-319.	1.1	191
105	Monitor – biology. Drug Discovery Today, 2005, 10, 1201-1203.	3.2	Ο
106	Insights into the Mechanism of Action of Ferroquine. Relationship between Physicochemical Properties and Antiplasmodial Activity. Molecular Pharmaceutics, 2005, 2, 185-193.	2.3	150
107	Monitor – biology. Drug Discovery Today, 2004, 9, 1030-1032.	3.2	0
108	Nucleation of calcium oxalate crystals on an imprinted polymer surface from pure aqueous solution and urine. Journal of Biological Inorganic Chemistry, 2004, 9, 195-202.	1.1	15

#	Article	IF	CITATIONS
109	Effects of solvent composition and ionic strength on the interaction of quinoline antimalarials with ferriprotoporphyrin IX. Journal of Inorganic Biochemistry, 2004, 98, 144-152.	1.5	37
110	In Vitro Antimalarial Activity of a Series of Cationic 2,2â€~-Bipyridyl- and 1,10-Phenanthrolineplatinum(II) Benzoylthiourea Complexes. Journal of Medicinal Chemistry, 2004, 47, 2926-2934.	2.9	93
111	Haemozoin (malaria pigment): a unique crystalline drug target. Targets, 2003, 2, 115-124.	0.3	59
112	A unique bioinorganic mechanism of action of antimalarial aminoquinolines. Journal of Inorganic Biochemistry, 2003, 96, 13.	1.5	0
113	Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochemical Journal, 2002, 365, 343-347.	1.7	253
114	Structureâ^'Activity Relationships in 4-Aminoquinoline Antiplasmodials. The Role of the Group at the 7-Position. Journal of Medicinal Chemistry, 2002, 45, 3531-3539.	2.9	215
115	Pigment biocrystallization in Plasmodium falciparum. Trends in Parasitology, 2002, 18, 11.	1.5	44
116	Discovering Antimalarials. Chemistry and Biology, 2002, 9, 852-853.	6.2	3
117	Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. Journal of Inorganic Biochemistry, 2002, 91, 19-26.	1.5	91
118	The Mechanism of β-Hematin Formation in Acetate Solution. Parallels between Hemozoin Formation and Biomineralization Processes. Biochemistry, 2001, 40, 204-213.	1.2	152
119	Quinoline antimalarials. Expert Opinion on Therapeutic Patents, 2001, 11, 185-209.	2.4	47
120	Structure-Function Relationships in Chloroquine and Related 4-Aminoquinoline Antimalarials. Mini-Reviews in Medicinal Chemistry, 2001, 1, 113-123.	1.1	59
121	Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. Drug Development Research, 2000, 50, 195-202.	1.4	58
122	Standardization of the Physicochemical Parameters to Assess in Vitro the β-Hematin Inhibitory Activity of Antimalarial Drugs. Experimental Parasitology, 2000, 96, 249-256.	0.5	102
123	Structureâ^'Function Relationships in Aminoquinolines:Â Effect of Amino and Chloro Groups on Quinolineâ^'Hematin Complex Formation, Inhibition of β-Hematin Formation, and Antiplasmodial Activity. Journal of Medicinal Chemistry, 2000, 43, 283-291.	2.9	301
124	Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. , 2000, 50, 195.		1
125	Characterisation of synthetic β-haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine on its formation. Journal of Inorganic Biochemistry, 1999, 73, 101-107.	1.5	85
126	The role of haem in the activity of chloroquine and related antimalarial drugs. Coordination Chemistry Reviews, 1999, 190-192, 493-517.	9.5	78

#	Article	IF	CITATIONS
127	Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX. Journal of Inorganic Biochemistry, 1997, 68, 137-145.	1.5	152
128	The chemical mechanism of β-haematin formation studied by Mössbauer spectroscopy. Biochemical Journal, 1996, 318, 25-27.	1.7	41
129	The iron environment in heme and heme-antimalarial complexes of pharmacological interest. Journal of Inorganic Biochemistry, 1996, 63, 69-77.	1.5	68
130	The interaction of the heme-octapeptide, N-acetylmicroperoxidase-8 with antimalarial drugs: Solution studies and modeling by molecular mechanics methods. Journal of Inorganic Biochemistry, 1996, 64, 7-23.	1.5	30
131	Release of iron from C-terminal monoferric transferrin to phosphate and pyrophosphate at pH 5.5 proceeds through two pathways. Journal of Inorganic Biochemistry, 1995, 57, 11-21.	1.5	29
132	Periodate Modification of Human Serum Transferrin Fe(III)-binding Sites Journal of Biological Chemistry, 1995, 270, 12404-12410.	1.6	8
133	Quinoline anti-malarial drugs inhibit spontaneous formation of β-haematin (malaria pigment). FEBS Letters, 1994, 352, 54-57.	1.3	333
134	Mechanism of iron release from human serum C-terminal monoferric transferrin to pyrophosphate: kinetic discrimination between alternative mechanisms. Inorganic Chemistry, 1992, 31, 1994-1998.	1.9	61
135	Kinetics of iron removal from human serum monoferric transferrins by citrate. Inorganic Chemistry, 1991, 30, 3758-3762.	1.9	38
136	Nucleophilic participation of incoming ligands in the transition state of substitution reactions of aquocobalamin: kinetics of the reaction with imidazole and its derivatives. Inorganica Chimica Acta, 1990, 170, 134.	1.2	0
137	Nucleophilic participation of incoming ligands in the transition state of substitution reactions of aquocobalamin: kinetics of the reaction with imidazole and its derivatives. Inorganica Chimica Acta, 1989, 166, 249-255.	1.2	32