

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302331/publications.pdf Version: 2024-02-01

KEVII XIE

#	Article	IF	CITATIONS
1	Accordion Frameworks Enable Freeâ€Standing, High Si Content Anode for Liâ€ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	2
2	Understanding the Coffee ring Effect on Selfâ€discharge Behavior of Printed microâ€&upercapacitors. Energy and Environmental Materials, 2022, 5, 321-326.	7.3	6
3	SnO2/SnxMo1â^'xO3â^'x solid solution nanocomposites: Demonstration of enhanced lithium storage behavior with general synergistic effects. Journal of Alloys and Compounds, 2022, 895, 162607.	2.8	3
4	Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nature Communications, 2022, 13, 5.	5.8	20
5	Collaborative enhancement of luminous efficacy and fracture toughness based on interface design of Al2O3/YAG:Ce3+ eutectic phosphor ceramic grown by laser floating zone melting. Ceramics International, 2022, 48, 10144-10154.	2.3	3
6	Highly improved efficiency and stability of planar perovskite solar cells via bifunctional phytic acid dipotassium anchored SnO2 electron transport layer. Applied Surface Science, 2022, 588, 152943.	3.1	14
7	An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery. Energy Storage Materials, 2022, 49, 1-10.	9.5	10
8	CO ₂ â€Induced Melting and Solvation Reconfiguration of Phaseâ€Change Electrolyte. Advanced Materials, 2022, 34, e2202869.	11.1	4
9	Constructing ambivalent imidazopyridinium-linked covalent organic frameworks. , 2022, 1, 382-392.		38
10	Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance. Journal of Advanced Ceramics, 2022, 11, 882-892.	8.9	23
11	Monoanion-regulated high-voltage nitrile-based solid electrolyte with compatible lithium inertness. Energy Storage Materials, 2021, 34, 640-647.	9.5	18
12	Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chemical Engineering Journal, 2021, 407, 127123.	6.6	17
13	A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries. Journal of Materials Science and Technology, 2021, 66, 121-127.	5.6	19
14	Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 55, 580-587.	7.1	22
15	Uniform-dispersed ZnS quantum dots loading on graphene as a promising anode for potassium-ion batteries. Chinese Chemical Letters, 2021, 32, 1117-1120.	4.8	21
16	A scalable snowballing strategy to construct uniform rGO-wrapped LiNi0.8Co0.1Mn0.1O2 with enhanced processability and electrochemical performance. Applied Surface Science, 2021, 542, 148663.	3.1	18
17	A Highâ€Performance Lithium Metal Battery with Ionâ€5elective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323.	11.1	64
18	An overview of flow cell architecture design and optimization for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 20897-20918.	5.2	61

#	Article	IF	CITATIONS
19	Hybrid printed three-dimensionally integrated micro-supercapacitors for compact on-chip application. Applied Physics Reviews, 2021, 8, .	5.5	10
20	Highly Enhanced Efficiency of Planar Perovskite Solar Cells by an Electron Transport Layer Using Phytic Acid–Complexed SnO ₂ Colloids. Solar Rrl, 2021, 5, 2100067.	3.1	16
21	Highâ€Energy Aqueous Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 11943-11948.	7.2	100
22	Highâ€Energy Aqueous Sodiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 12050-12055.	1.6	13
23	Fast decomposition of Li2CO3/C actuated by single-atom catalysts for Li-CO2 batteries. Science China Materials, 2021, 64, 2139-2147.	3.5	21
24	One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 2021, 41, 3547-3558.	2.8	32
25	Single crystal Cu (110) inducing lateral growth of electrodeposition Li for dendrite-free Li metal-based batteries. Journal of Power Sources, 2021, 501, 229969.	4.0	11
26	Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Materials and Design, 2021, 209, 109972.	3.3	21
27	Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Materials, 2020, 25, 382-403.	9.5	14
28	Prepotassiated V ₂ O ₅ as the Cathode Material for Highâ€Voltage Potassiumâ€Ion Batteries. Energy Technology, 2020, 8, 1900796.	1.8	27
29	Reducedâ€Grapheneâ€Oxideâ€Guided Directional Growth of Planar Lithium Layers. Advanced Materials, 2020, 32, e1907079.	11.1	70
30	Multifunctional Silanization Interface for Highâ€Energy and Lowâ€Gassing Lithium Metal Pouch Cells. Advanced Energy Materials, 2020, 10, 1903362.	10.2	31
31	TiO2 Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 1715-1722.	0.9	1
32	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li–Organic Batteries. ACS Energy Letters, 2020, 5, 3498-3506.	8.8	114
33	Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy. Nano Energy, 2020, 78, 105239.	8.2	30
34	Inducing rapid polysulfide transformation through enhanced interfacial electronic interaction for lithium–sulfur batteries. Nanoscale, 2020, 12, 13980-13986.	2.8	14
35	Tunable electronic properties of TiO2 nanocrystals by in situ dopamine functionalization for planar perovskite solar cells. Electrochimica Acta, 2020, 354, 136720.	2.6	12
36	Design principles of pseudocapacitive carbon anode materials for ultrafast sodium and potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7756-7764.	5.2	16

#	Article	IF	CITATIONS
37	A multifunctional electrolyte with highly-coordinated solvation structure-in-nonsolvent for rechargeable lithium batteries. Journal of Energy Chemistry, 2020, 51, 362-371.	7.1	18
38	Degradation Mechanism of LiNi0.5Co0.2Mn0.3O2/Graphite Cells at Elevated State of Charge and High Temperature. Journal of the Electrochemical Society, 2020, 167, 160528.	1.3	8
39	Highly Lithiophilic Cobalt Nitride Nanobrush as a Stable Host for High-Performance Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 30992-30998.	4.0	40
40	Toward High-Performance Li Metal Anode via Difunctional Protecting Layer. Frontiers in Chemistry, 2019, 7, 572.	1.8	12
41	Concentrated LiODFB Electrolyte for Lithium Metal Batteries. Frontiers in Chemistry, 2019, 7, 494.	1.8	12
42	Formation of Stable Mixed LiF and Liâ€Alâ€Alloy Reinforced Interface Film for Lithium Metal Anodes. ChemistrySelect, 2019, 4, 7673-7678.	0.7	7
43	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/Nâ€rGO Heterostructures for Efficient Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901806.	10.2	101
44	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 18246-18251.	7.2	60
45	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e190	5879.1	129
46	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 18414-18419.	1.6	10
47	Synergetic enhancement of polysulfide chemisorption and electrocatalysis over bicontinuous MoN@N-rich carbon porous nano-octahedra for Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 21934-21943.	5.2	37
48	An artificial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium. Solid State Ionics, 2019, 333, 101-104.	1.3	12
49	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25147-25154.	4.0	152
50	High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation. Frontiers in Chemistry, 2019, 7, 388.	1.8	32
51	Towards high energy-high power dendrite-free lithium metal batteries: The novel hydrated vanadium oxide/graphene‗silicon nitride/lithium system. Journal of Power Sources, 2019, 417, 14-20.	4.0	9
52	Expedient synthesis of <i>E</i> -hydrazone esters and 1 <i>H</i> -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	4.7	31
53	Surface modification via a nanosized nitride material to stabilize lithium metal anode. Ceramics International, 2019, 45, 8045-8048.	2.3	9
54	Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5015-5021.	4.0	69

#	Article	IF	CITATIONS
55	Hosting Ultrahigh Areal Capacity and Dendrite-free Lithium via Porous Scaffold. ACS Sustainable Chemistry and Engineering, 2018, 6, 4776-4783.	3.2	15
56	Na ₃ V ₂ (PO ₄) ₂ F ₃ @C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6007-6014.	5.2	129
57	Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. Nano Letters, 2018, 18, 2067-2073.	4.5	154
58	Three-dimensional macroporous graphene monoliths with entrapped MoS ₂ nanoflakes from single-step synthesis for high-performance sodium-ion batteries. RSC Advances, 2018, 8, 2477-2484.	1.7	13
59	Coupling plasmonic nanoparticles with TiO2 nanotube photonic crystals for enhanced dye-sensitized solar cells performance. Electrochimica Acta, 2018, 263, 373-381.	2.6	23
60	Facile fabrication of permselective g-C 3 N 4 separator for improved lithium-sulfur batteries. Electrochimica Acta, 2018, 272, 60-67.	2.6	41
61	Li2O-Reinforced Solid Electrolyte Interphase on Three-Dimensional Sponges for Dendrite-Free Lithium Deposition. Frontiers in Chemistry, 2018, 6, 517.	1.8	20
62	Concentrated electrolytes based on dual salts of LiFSI and LiODFB for lithium-metal battery. Electrochimica Acta, 2018, 289, 422-427.	2.6	36
63	A Scalable Approach to Dendriteâ€Free Lithium Anodes via Spontaneous Reduction of Sprayâ€Coated Graphene Oxide Layers. Advanced Materials, 2018, 30, e1801213.	11.1	204
64	Vertically Grown Edgeâ€Rich Graphene Nanosheets for Spatial Control of Li Nucleation. Advanced Energy Materials, 2018, 8, 1800564.	10.2	145
65	Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 25446-25453.	4.0	269
66	Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode. Journal of Applied Electrochemistry, 2018, 48, 1139-1149.	1.5	10
67	Dramatically Enhanced Ion Conductivity of Gel Polymer Electrolyte for Supercapacitor via h-BN Nanosheets Doping. Electrochimica Acta, 2017, 227, 455-461.	2.6	40
68	Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy–High Power Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4605-4613.	4.0	67
69	Uniform growth of MoS 2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries. Electrochimica Acta, 2017, 231, 396-402.	2.6	53
70	Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 7309-7315.	5.2	52
71	Broadband and omnidirectional light harvesting enhancement in photovoltaic devices with aperiodic TiO2 nanotube photonic crystal. Journal of Power Sources, 2017, 345, 12-20.	4.0	13
72	Ferroelectricâ€Enhanced Polysulfide Trapping for Lithium–Sulfur Battery Improvement. Advanced Materials, 2017, 29, 1604724.	11.1	149

#	Article	IF	CITATIONS
73	Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahighâ€Performance Electromagneticâ€Interference Shielding. Advanced Materials, 2017, 29, 1701583.	11.1	560
74	Au/TiO ₂ Hollow Spheres with Synergistic Effect of Plasmonic Enhancement and Light Scattering for Improved Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31691-31698.	4.0	49
75	Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene. Small, 2017, 13, 1701471.	5.2	221
76	Energy Storage: Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene (Small 42/2017). Small, 2017, 13, .	5.2	2
77	Enhanced Photocarrier Separation in Hierarchical Graphitic-C ₃ N ₄ -Supported CuInS ₂ for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 24577-24583.	4.0	99
78	Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries. Materials, 2017, 10, 174.	1.3	33
79	Electrochemical and Printable Properties of Polydopamine Decorated Carbon Nanotube Ink. Science of Advanced Materials, 2017, 9, 2039-2044.	0.1	4
80	Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Advances, 2016, 6, 35746-35750.	1.7	27
81	Nanomaterials for Stretchable Energy Storage and Conversion Devices. Nanoscience and Technology, 2016, , 159-191.	1.5	3
82	Highly Flexible Graphene/Mn ₃ O ₄ Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries. ACS Nano, 2016, 10, 6227-6234.	7.3	291
83	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Applied Materials & Interfaces, 2016, 8, 26091-26097.	4.0	152
84	A Novel TiO2-Wrapped Activated Carbon Fiber/Sulfur Hybrid Cathode for High Performance Lithium Sulfur Batteries. Electrochimica Acta, 2016, 210, 415-421.	2.6	34
85	One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. Journal of Power Sources, 2016, 306, 100-106.	4.0	163
86	All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy, 2016, 22, 524-532.	8.2	84
87	Controlled synthesis of NiCo2S4 nanostructures on nickel foams for high-performance supercapacitors. Energy Storage Materials, 2016, 2, 1-7.	9.5	59
88	The importance of raw graphite size to the capacitive properties of graphene oxide. RSC Advances, 2016, 6, 17023-17028.	1.7	10
89	Graphene/Sulfur Hybrid Nanosheets from a Spaceâ€Confined "Sauna―Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 5936-5942.	11.1	124
90	Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13699-13705.	5.2	133

#	Article	IF	CITATIONS
91	Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy, 2015, 15, 413-444.	8.2	226
92	Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal. Journal of Power Sources, 2015, 293, 170-177.	4.0	24
93	Photonic crystals for sensitized solar cells: fabrication, properties, and applications. Journal of Materials Chemistry C, 2015, 3, 10665-10686.	2.7	41
94	Facile fabrication of MnO/C core–shell nanowires as an advanced anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 990-997.	2.6	82
95	Fabrication of a novel TiO ₂ /S composite cathode for high performance lithium–sulfur batteries. RSC Advances, 2015, 5, 77348-77353.	1.7	29
96	Aligned TiO ₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. Nanotechnology, 2014, 25, 455401.	1.3	11
97	A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO ₂ nanotube photonic crystal. Nanoscale, 2014, 6, 13060-13067.	2.8	21
98	Fabrication of iron oxide nanotube arrays by electrochemical anodization. Corrosion Science, 2014, 88, 66-75.	3.0	60
99	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
100	Aperiodic TiO2 Nanotube Photonic Crystal: Full-Visible-Spectrum Solar Light Harvesting in Photovoltaic Devices. Scientific Reports, 2014, 4, 6442.	1.6	32
101	Nano-Array Electrodes for Next-Generation Lithium-Ion Batteries. Science of Advanced Materials, 2014, 6, 863-874.	0.1	7
102	A Oneâ€Step and Binderâ€Free Method to Fabricate Hierarchical Nickelâ€Based Supercapacitor Electrodes with Excellent Performance. Advanced Functional Materials, 2013, 23, 3675-3681.	7.8	144
103	Enhanced Light Harvesting in Dye-Sensitized Solar Cells Coupled with Titania Nanotube Photonic Crystals: A Theoretical Study. ACS Applied Materials & Interfaces, 2013, 5, 13022-13028.	4.0	22
104	Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 5560.	6.7	77
105	Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy and Environmental Science, 2012, 5, 9881.	15.6	130
106	Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale, 2011, 3, 2202.	2.8	146
107	Direct and Seamless Coupling of TiO ₂ Nanotube Photonic Crystal to Dye‧ensitized Solar Cell: A Single‧tep Approach. Advanced Materials, 2011, 23, 5624-5628.	11.1	145
108	Photovoltaic Devices: Direct and Seamless Coupling of TiO2 Nanotube Photonic Crystal to Dye-Sensitized Solar Cell: A Single-Step Approach (Adv. Mater. 47/2011). Advanced Materials, 2011, 23, 5623-5623.	11.1	2

#	Article	IF	CITATIONS
109	Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications, 2011, 13, 657-660.	2.3	286
110	Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. Journal of Power Sources, 2010, 195, 5344-5350.	4.0	67