
Phyllis D Coley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1301699/publications.pdf Version: 2024-02-01

PHVILLS D COLEV

#	Article	IF	CITATIONS
1	Herbivory and Defensive Characteristics of Tree Species in a Lowland Tropical Forest. Ecological Monographs, 1983, 53, 209-234.	5.4	1,458
2	River dynamics and the diversity of Amazon lowland forest. Nature, 1986, 322, 254-258.	27.8	801
3	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	7.1	454
4	The resource availability hypothesis revisited: a metaâ€analysis. Functional Ecology, 2011, 25, 389-398.	3.6	446
5	The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus <i>Inga</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18073-18078.	7.1	277
6	Effects of leaf age and plant life history patterns on herbivory. Nature, 1980, 284, 545-546.	27.8	233
7	Costs and benefits of defense by tannins in a neotropical tree. Oecologia, 1986, 70, 238-241.	2.0	229
8	INTERSPECIFIC VARIATION IN PLANT ANTIâ€HERBIVORE PROPERTIES: THE ROLE OF HABITAT QUALITY AND RATE OF DISTURBANCE. New Phytologist, 1987, 106, 251-263.	7.3	193
9	Possible Effects of Climate Change on Plant/Herbivore Interactions in Moist Tropical Forests. Climatic Change, 1998, 39, 455-472.	3.6	166
10	Delayed Greening in Tropical Leaves: An Antiherbivore Defense?. Biotropica, 1992, 24, 256.	1.6	156
11	Anti-Herbivore Defenses of Young Tropical Leaves: Physiological Constraints and Ecological Trade-offs. , 1996, , 305-336.		143
12	Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7499-E7505.	7.1	123
13	Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest. Oikos, 2007, 116, 31-40.	2.7	120
14	Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecology, 2014, 8, 1-11.	1.6	115
15	Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2645-2650.	7.1	103
16	Red coloration of tropical young leaves: a possible antifungal defence?. Journal of Tropical Ecology, 1989, 5, 293-300.	1.1	101
17	Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses. Mycologia, 2011, 103, 247-260.	1.9	97
18	On Tropical Forests and Their Pests. Science, 2014, 343, 35-36.	12.6	92

PHYLLIS D COLEY

#	Article	IF	CITATIONS
19	Nitrogen Content and Expansion Rate of Young Leaves of Rain Forest Species: Implications for Herbivory. Biotropica, 1991, 23, 141.	1.6	91
20	Herbivores as drivers of negative density dependence in tropical forest saplings. Science, 2019, 363, 1213-1216.	12.6	87
21	High herbivore pressure favors constitutive over induced defense. Ecology and Evolution, 2016, 6, 6037-6049.	1.9	78
22	Do pathogens limit the distributions of tropical trees across a rainfall gradient?. Journal of Ecology, 2015, 103, 165-174.	4.0	73
23	Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in <i><scp>l</scp>nga</i> , a genus of tropical trees. Ecology and Evolution, 2016, 6, 478-492.	1.9	70
24	Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree. Oecologia, 2018, 187, 361-376.	2.0	68
25	Using ecological criteria to design plant collection strategies for drug discovery. Frontiers in Ecology and the Environment, 2003, 1, 421-428.	4.0	64
26	Photosynthetic induction times in shade-tolerant species with long and short-lived leaves. Oecologia, 1993, 93, 165-170.	2.0	60
27	Divergent evolution in antiherbivore defences within species complexes at a single Amazonian site. Journal of Ecology, 2015, 103, 1107-1118.	4.0	60
28	Contrasting modes of light acclimation in two species of the rainforest understory. Oecologia, 1999, 121, 489-498.	2.0	59
29	DIVERGENT DEFENSIVE STRATEGIES OF YOUNG LEAVES IN TWO SPECIES OF INGA. Ecology, 2005, 86, 2633-2643.	3.2	56
30	Allelochemic function for a primary metabolite: the case of lâ€ŧyrosine hyperâ€production in <i>Inga umbellifera</i> (Fabaceae). American Journal of Botany, 2006, 93, 1109-1115.	1.7	54
31	Tropical Monodominance: A Preliminary Test of the Ectomycorrhizal Hypothesis1. Biotropica, 1999, 31, 220-228.	1.6	45
32	Contrasting mechanisms of secondary metabolite accumulation during leaf development in two tropical tree species with different leaf expansion strategies. Oecologia, 2006, 149, 91-100.	2.0	45
33	Cinnamoyl glucosides of catechin and dimeric procyanidins from young leaves of Inga umbellifera (Fabaceae). Phytochemistry, 2004, 65, 351-358.	2.9	42
34	Functional Traits 2.0: The power of the metabolome for ecology. Journal of Ecology, 2022, 110, 4-20.	4.0	42
35	FOOD QUALITY, COMPETITION, AND PARASITISM INFLUENCE FEEDING PREFERENCE IN A NEOTROPICAL LEPIDOPTERAN. Ecology, 2006, 87, 3058-3069.	3.2	33
36	The effect of soil on the growth performance of tropical species with contrasting distributions. Oikos, 2008, 117, 1453-1460.	2.7	26

PHYLLIS D COLEY

#	Article	IF	CITATIONS
37	Galloyl Depsides of Tyrosine from Young Leaves of Inga laurina. Journal of Natural Products, 2007, 70, 134-136.	3.0	25
38	Chemocoding as an identification tool where morphological―and <scp>DNA</scp> â€based methods fall short: <i>Inga</i> as a case study. New Phytologist, 2018, 218, 847-858.	7.3	25
39	Antiprotozoal Activity AgainstPlasmodium falciparum. andTrypanosoma cruzi. of Xanthones Isolated fromChrysochlamys tenuis Pharmaceutical Biology, 2006, 44, 550-553.	2.9	24
40	Monodominance in an African Rain Forest: Is Reduced Herbivory Important?1. Biotropica, 2000, 32, 430-439.	1.6	23
41	Coibanoles, a new class of meroterpenoids produced by Pycnoporus sanguineus. Tetrahedron Letters, 2012, 53, 919-922.	1.4	23
42	Macroevolutionary patterns in overexpression of tyrosine: An antiâ€herbivore defence in a speciose tropical tree genus, <i>Inga</i> (Fabaceae). Journal of Ecology, 2019, 107, 1620-1632.	4.0	21
43	Developmental Changes in Direct and Indirect Defenses in the Young Leaves of the Neotropical Tree Genus <i><scp>I</scp>nga</i> (<scp>F</scp> abaceae). Biotropica, 2013, 45, 175-184.	1.6	20
44	Tracking of Host Defenses and Phylogeny During the Radiation of Neotropical Inga-Feeding Sawflies (Hymenoptera; Argidae). Frontiers in Plant Science, 2018, 9, 1237.	3.6	19
45	Combined Effects of Host Plant Quality and Predation on a Tropical Lepidopteran: A Comparison between Treefall Gaps and the Understory in Panama. Biotropica, 2008, 40, 736-741.	1.6	18
46	Divergence and diversity in the defensive ecology of Inga at two Neotropical sites. Journal of Ecology, 2007, 96, 071203163438002-???.	4.0	16
47	The role of plant secondary metabolites in shaping regional and local plant community assembly. Journal of Ecology, 2022, 110, 34-45.	4.0	15
48	The Effect of Symbiotic Ant Colonies on Plant Growth: A Test Using an Azteca-Cecropia System. PLoS ONE, 2015, 10, e0120351.	2.5	12
49	A new paradigm for drug discovery in tropical rainforests. Nature Biotechnology, 1996, 14, 1200-1202.	17.5	9
50	Phenolics lie at the centre of functional versatility in the responses of two phytochemically diverse tropical trees to canopy thinning. Journal of Experimental Botany, 2019, 70, 5853-5864.	4.8	8
51	Domatia morphology and mite occupancy of Psychotria horizontalis (Rubiaceae) across the Isthmus of Panama. Arthropod-Plant Interactions, 2012, 6, 129-136.	1.1	4
52	A rapid, efficient method for the bioassay of extracts, fractions and compounds for activity against tropical aphids. International Journal of Pest Management, 2006, 52, 333-342.	1.8	3
53	THE GROWTH–DEFENSE TRADE-OFF AND HABITAT SPECIALIZATION BY PLANTS IN AMAZONIAN FORESTS. , 2006, 87, S150.		2
54	Impacts of Plant Defenses on Host Choice by Lepidoptera in Neotropical Rainforests. Fascinating Life Sciences, 2022, , 93-114.	0.9	2

#	Article	IF	CITATIONS
55	Glass Ceiling: Bump, Bump. Science, 1995, 269, 1328-1328.	12.6	0